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Figure 1: We introduce a deep learning model that learns explicit image smoothing kernels from paired unsmoothed and smoothed images.
With the learned image smoothing kernels, our method can perform image smoothing (a). Moreover, the merit of the proposed method lies
in joint image filtering for various image processing tasks such as color interpolation (b), saliency map upsampling (c) and flash/non-flash
image denoising (d) using the model learned from (a).

Abstract
Smoothing noises while preserving strong edges in images is an important problem in image processing. Image smoothing
filters can be either explicit (based on local weighted average) or implicit (based on global optimization). Implicit methods
are usually time-consuming and cannot be applied to joint image filtering tasks, i.e., leveraging the structural information of a
guidance image to filter a target image.Previous deep learning based image smoothing filters are all implicit and unavailable
for joint filtering. In this paper, we propose to learn explicit guidance feature maps as well as offset maps from the guidance
image and smoothing parameter that can be utilized to smooth the input itself or to filter images in other target domains. We
design a deep convolutional neural network consisting of a fully-convolution block for guidance and offset maps extraction
together with a stacked spatially varying deformable convolution block for joint image filtering. Our models can approximate
several representative image smoothing filters with high accuracy comparable to state-of-the-art methods, and serve as general
tools for other joint image filtering tasks, such as color interpolation, depth map upsampling, saliency map upsampling,
flash/non-flash image denoising and RGB/NIR image denoising.

CCS Concepts
• Computing methodologies → Image processing;
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1. Introduction

Edge-preserving image smoothing aims to remove noises and small
variation in images while retaining the strong edges and structures.
Edge-preserving filters have been extensively studied and have a
large variety of applications such as image denoising, cartooniza-
tion, detail enhancement, HDR tone mapping and joint image fil-
tering. Joint image filtering uses a guidance map to filter a target
image, for example, filtering a low resolution depth image to make
its edge aligned with the high resolution color image, or propa-
gating sparse data into the whole image domain according to the
boundary of the guidance image. The structural information of the
guidance map is transferred to the target image by a joint filter. In
this paper, we propose a method to use deep learning to learn im-
age smoothing kernels with controllable parameters that are also
capable of joint image filtering.

Edge-preserving image smoothing filters can be divided into two
categories: explicit methods and implicit methods. Given an in-
put image I, explicit methods compute the smoothed image S by
weighted averaging pixel values in the neighborhood of each pixel
p:

S(p) = ∑
q∈N(p)

w(p,q)I(q), (1)

where N(p) represents the neighborhood of pixel p and the weights
are normalized, i.e., ∑q∈N(p) w(p,q) = 1. The weight w(p,q) eval-
uates the affinity between pixel p and q. Typical explicit methods
include bilateral filter [TM98], region covariance method [KEE13],
and bilateral texture filter [CLKL14]. Other methods such as guided
filter [HST10], domain transform [GO11] and tree filter [BSY*14;
ZDXZ15] may have different computational strategies, but they
could be viewed as weighted average methods in essence. Explicit
methods can be applied to joint image filtering if the affinity term
w(·, ·) is computed on a guidance image G different from I.

Implicit methods formulate image smoothing as a global opti-
mization problem that minimizes

E(S) = Ed(S, I)+λEv(S), (2)

where Ed(S, I) is a data term measuring the difference between
input I and output S, while the smooth term Ev(S) penalizes
the color variations in output S with parameter λ balancing
these two terms. Representative methods include total variation-
L1 [ROF92], weighted least square (WLS) [FFLS08], L0 optimiza-
tion [XLXJ11], relative total variation (RTV) [XYXJ12] and L1
optimization [BHY15]. Note that although WLS is a global opti-
mization based method, it has a closed-form solution using matrix
multiplication, so it is also available for joint filtering. However,
most optimization based methods can only smooth the input image
itself because there is not an explicit form for the solution.

Many image smoothing filters are time-consuming because of
the complexity of optimization or the feature extraction step. With
the development of deep neural networks, researchers have pro-
posed several strategies to approximate existing smoothing filters
with acceleration [XRY*15; LPY16; FYH*17], or to directly learn
new deep filters [LYB18; FYW*18]. Nevertheless, current deep
neural networks based filters are totally end-to-end black-box mod-
els, making it impossible to jointly filter images in other domains.

The motivation of this work is to exploit the power of image
smoothing algorithms for joint filtering applications under a deep
learning framework. Gharbi et al. [GCB*17] proposed an architec-
ture that can approximate many kinds of image operators, but it
requires training on every specific task.

Some approaches proposed to directly learn a joint filter using
convolutional neural networks (CNNs). Li et al. [LHAY19] trained
CNN models for joint depth map upsampling and joint depth map
denoising respectively. However, these models are limited to a spe-
cific scenario, e.g., 8× upsampling, and hence cannot well gener-
alize to other tasks. Moreover, their method cannot be adapted to
perform sparse data interpolation.

In this work we do not learn the smoothed output directly,
but rather hypothesize that the output can be obtained accord-
ing to Equ. (1) and learn the kernel weights w(·, ·) from a
CNN model. Our strategy is similar to the kernel prediction
method [JDTG16], which has been applied to denoising [MBC*18;
BVM*17; VRM*18]. However, directly applying Equ. (1) requires
a large neighborhood, so we instead filter the image by stacked de-
formable convolution layers [DQX*17; ZHLD18] with small ker-
nel sizes. We extract feature maps and offset maps from the guid-
ance image with a CNN, and define the kernel weight w(p,q) as
the affinity between feature vectors of pixel p and q. These weights
can then be applied to filter other target images. Following Fan et
al. [FCY*18], we learn image filters with adjustable input parame-
ters that control the strength of smoothing. Figure 2 illustrates the
pipeline of our approach. At the training stage the target and guid-
ance images are identical while for usage they might differ. Our
model can not only smooth the guidance image itself but also filter
images from other target domains using the extracted feature maps
and offset maps.

We choose 3 representative image smoothing methods for evalu-
ation: weighted least square [FFLS08], L0 optimization [XLXJ11],
relative total variation [XYXJ12], and using the same network
we can learn a model for each of these methods. Experiments
show that our method can achieve comparable approximation accu-
racy with state-of-the-art approaches. We also apply the method to
other joint image filtering tasks: color interpolation, depth map up-
sampling, saliency map upsampling, flash/non-flash denoising and
RGB/NIR image denoising. Results demonstrate that the learned
image smoothing filters are useful for these joint filtering tasks.

In summary, the main contributions of this paper are:

• Proposing a CNN framework to learn explicit kernels of image
smoothing filter consisting of a sampling strategy and a weight-
ing function that can replicate the effects of existing optimization
based image smoothing filters;
• Exploiting the learned explicit kernels for joint image filtering

tasks using the same model and parameters, which previous deep
image smoothing filters could not do.

2. Related Work

In this section, we will introduce the representative explicit and im-
plicit image smoothing methods. Then we briefly review joint im-
age filtering algorithms and spatially variant filters in deep neural
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networks. Finally we illustrate the development of image smooth-
ing filters learning with convolutional neural networks.

2.1. Explicit Image Smoothing Methods

Filtering an image with Gaussian kernel can smooth the image
content with spatially invariant strength, which might leads to
the destruction of visually prominent structures. Bilateral filter
(BF) [TM98] preserves the strong edges by combining spatial dis-
tance and range distance when applying Equ. (1):

w(p,q) = exp(−||p−q||2/σ
2
s ) · exp(−‖|I(p)− I(q)||2/σ

2
r ). (3)

Rolling guidance filter [ZSXJ14] applies bilateral filter recursively
by using the output of the latest iteration as guidance image. Re-
searchers have designed other hand-crafted features to compute the
weights w(·, ·), such as region covariance method [KEE13] and bi-
lateral texture filter [CLKL14]. Anisotropic diffusion [PM90] is an-
other spatially varying filter that propagates pixel values according
to local gradients. Guided filter [HST10] estimates a linear trans-
formation on local patches and then averages them. Domain trans-
form [GO11] maps the image manifold into a planar space and then
smooths the region within small geodesic distance. The tree fil-
ter [BSY*14] uses a minimal spanning tree to define the inter-pixel
distance. The segment graph based filter [ZDXZ15] improves the
tree filter by constructing a local MST on each superpixel. Since
the above methods have an explicit form to directly compute the
weighted average of input image, they are available for joint image
filtering.

2.2. Implicit Image Smoothing Methods

Image smoothing can also be formalized as a global optimization
problem, as described in Equ. (2). Total variation method penal-
izes the L1 norm of the gradient on the output image [ROF92].
Weighted least square (WLS) method [FFLS08] defines both the
data term and smooth term in quadratic form so that the global
minimum could be found by solving a linear system. Efforts have
been made to reduce the complexity of WLS by solving the lin-
ear system on one or a few rows/columns [MCL*14; LCS*17].
Least-squares images [WCL*15] have zero inhomogeneous Lapla-
cian and approximate the original image in a least-squares sense. L0
method [XLXJ11] defines the smooth term as the L0 norm of im-
age gradients, providing results with sharp edges. A non-local con-
centration regularization term could be added to improve the qual-
ity of L0 optimization [LZGZ15]. Relative total variation (RTV)
method [XYXJ12] was designed to separate textures from struc-
tures, which is useful to smooth the textures for mosaic images.
L1 optimization [BHY15] can be used to smooth the image and to
estimate the reflectance and shading map. Most implicit methods
do not have a closed-form solution, and hence are not available for
joint image filtering. Besides, the optimization-based methods are
usually time-consuming.

2.3. Joint Image Filtering

Filtering a target image with guidance from another image is known
as joint image filtering. The explicit image smoothing filters can
be applied for joint image filtering. Among them the most popular

methods are joint bilateral upsampling [KCLU07] and guided fil-
ter [HST10]. Joint filtering can also be formulated as an optimiza-
tion problem, as shown in [DT06; PKT*11]. Ham et al. [HCP15]
proposed to use both the static and dynamic guidance for filtering.
The mutual structures between target and guidance image could be
utilized for filtering [SZXJ15]. Li et al. [LHAY19] proposed deep
joint filter (DJF), a CNN framework that extracts structures from
both the target and guidance image for joint upsampling and joint
denoising tasks. Our work differs from Li et al. [LHAY19] in two
aspects. Firstly our goal is to approximate existing image smooth-
ing filters rather than to directly learn a joint filtering model for
one specific task. Secondly we learn controllable parameters so that
our model is a general tool available for a large variety of tasks in-
cluding color interpolation, upsampling and denoising, while Li et
al. [LHAY19] learned one model for upsampling, one model for
denoising, and neither of them can perform color interpolation.

2.4. Spatially Variant Filters in Deep Neural Networks

Traditional deep neural networks use spatially invariant convolu-
tion layers. Jia et al. [JDTG16] proposed to predict a dynamic con-
volution layer or a dynamic local filtering layer from input data
and apply the layer on the input. The latter strategy, namely ker-
nel prediction method, has been used for denoising bursts of im-
ages [MBC*18] and denoising Monte Carlo renderings [BVM*17;
VRM*18]. Deformable convolutional network [DQX*17] predicts
the sampling locations of the convolution operator and it was fur-
ther improved by modulating the input feature amplitudes from dif-
ferent spatial locations [ZHLD18]. We adopt deformable convolu-
tion in this work.

2.5. Learning Image Smoothing Filters with CNN

With the development of deep convolutional neural networks, re-
searchers have been engaged in learning image smoothing filters
with CNN to approximate previous filters, to improve time effi-
ciency or to enhance the smoothing quality. Xu et al. [XRY*15]
proposed to learn the output gradient field for reconstruction. Liu
et al. [LPY16] designed a linear RNN architecture to learn a re-
cursive filter on internal feature maps. Fan et al. [FYH*17] pro-
posed a cascaded CNN that estimates the edge map of the output
before predicting the output itself, which could improve the accu-
racy. They subsequently extended the network structure such that
it can receive variable smoothing parameters as input [FCY*18].
They also developed an unsupervised method to optimize an ex-
tremely complex energy function using CNN [FYW*18]. In addi-
tion, Lu et al. [LYB18] generated artificial images by mixing car-
toon images and pure textures to learn a model for texture removal.
Though current deep learning methods have achieved impressive
approximation accuracy, they all perform image smoothing in a
black box that are neither explainable nor available for joint filter-
ing, meaning that the applications of the learned filters are highly
limited: any learned filter is implicit, no matter whether its original
form is explicit or implicit. Besides, Gharbi et al. proposed Deep
Bilateral Learning [GCB*17] to accelerate a wider range of single
image enhancement operators, but in that work one model can only
work on one task, so their model has limited capability. The goal
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Figure 2: Pipeline of our method. First, we use a fully convolutional block to extract features and offsets from the guidance image. The
convolution weights are obtained from a fully connected layer that receives smoothing parameter as input. The second stage, composed of 4
deformable convolution layers, has no learnable parameters but utilizes the feature maps and offset maps given by previous step to filter the
target image.

The sampling locations are determined by offset maps and convolution weights are defined as the normalized inter-pixel affinity on the
feature maps. The model can perform joint filtering tasks when the target image and guidance image come from different domains.

of this work is to build the deep learning model in an explicit form,
making it a more powerful and general tool.

3. Learning Explicit Image Smoothing Kernels

This work borrows the idea from deep learning for parameterized
image operators [FCY*18] as well as deformable CNN [DQX*17].
As illustrated in Figure 2, our model has two parts. The first part
is a feature extractor that receives a guidance image together with
smoothing parameters and outputs a series of feature maps and off-
set maps with the same resolution as input. The second part per-
forms deformable convolution [DQX*17] on the target image 4
times with weights defined by the affinity between the feature vec-
tors and the sampling locations offered by 4 groups of offset maps.
We train the model on image smoothing task, in which the guid-
ance image and the target image are identical. But for usage we can
feed data from different domains to achieve joint filtering.

3.1. Feature Extractor

The feature extractor is supposed to predict feature maps and offset
maps from the guidance image and input parameter. It begins with
three convolution layers, followed by 7 residual blocks and ends
with another three convolution layers. Before entering the residual
blocks the image resolution is reduced with a convolution stride
of 2 and after the residual blocks the feature maps are upsampled
back to the original resolution using nearest interpolation. Inside
the residual blocks the dilation varies from 1 to 16 to enlarge the
reception field. We use instance normalization and ReLU activation
after every convolution layer except the last one.

The guidance input has C + 2 channels consisting of C color
channels and 2 channels of x,y coordinates. For example, since
WLS [FFLS08] method processes each color channel separately,
we set C = 1 when learning this filter, and set C = 3 when learn-
ing L0 optimization [XLXJ11] and RTV filter [XYXJ12]. All of

the intermediate layers have 64 channels. Unlike conventional con-
volutional neural networks, the weights in each convolution layer
are predicted by a linear layer using the smoothing parameter as
input, as illustrated at the top of Figure 2. The weights of the k-th
convolution layer, Wk, is obtained by:

Wk = AkP+Bk, (4)

where P is the input parameter and Ak, Bk are learnable parame-
ters. In all of the previous image-smoothing algorithms mentioned
above, there is a parameter λ to balance the data term and smooth-
ness term, as described in Equ. (2). In this work, we only test
the case of 1 variable parameter, though it is possible to extend
our model for multiple input parameters within our framework.
A larger input parameter indicates higher smoothing strength in
the original smoothing algorithms. We use both the parameter and
its reciprocal as the input for the linear layer, i.e., P = (λ,1/λ)T .
Under this setting the convolution kernels can adapt to variable
smoothing strength according to the input parameter. The last con-
volution layer outputs dF = 5 feature maps F and 72 offset maps O,
which will be used in the following filtering process. Both of them
have the same resolution as the guidance image.

3.2. Stacked Deformable Convolution Block

We implement the weighted average operator (Equ. (1)) with de-
formable convolution layers at this stage. Image filtering usually
requires computation in a large neighborhood. Most explicit image
smoothing methods use a large square patch, which our deep learn-
ing framework cannot afford. Instead, we use a few small kernels
to filter the image step by step. To further enlarge the sample range,
we leverage the idea of deformable convolution from [DQX*17;
ZHLD18]. Different from regular convolution that samples values
from a regular grid, a deformable convolution determines the sam-
pling locations according to offset maps. Let Ox

i j,O
y
i j be the offset

maps on x and y dimension. For a 3× 3 kernel, the sampling loca-
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(a) (b) (c) (d) (e) (f) (g)

Figure 3: Results of image smoothing. (a) Input image. (b, d, f) output of original method. (c, e, g) output of our network. Top row: L0,
λ = 0.005,0.01,0.02; second row: RTV, λ = 0.0045,0.0100,0.0224; third row: WLS, λ = 0.45,1.00,2.24.

WLS L0 RTV
λ Liu Gharbi Fan Ours λ Liu Gharbi Fan Ours λ Liu Gharbi Fan Ours

0.20 36.05 31.17 45.19 44.17 0.002 35.65 38.17 43.22 44.61 0.0020 35.13 31.57 42.21 40.40
0.45 34.45 29.36 44.61 44.67 0.005 32.98 33.28 41.04 40.98 0.0045 33.56 28.42 42.50 41.01
1.00 32.87 28.24 43.48 44.45 0.010 31.31 30.57 39.05 38.67 0.0100 31.38 26.88 42.51 41.45
2.24 30.89 27.59 42.18 44.26 0.020 30.90 28.03 37.05 36.58 0.0224 29.05 25.97 41.67 41.06
5.00 29.70 27.65 40.57 43.42 0.050 26.17 25.60 34.12 34.16 0.0500 27.19 26.17 39.38 39.29
Avg. 32.79 28.80 43.20 44.19 Avg. 31.40 31.13 38.90 39.00 Avg. 31.26 27.80 41.65 40.64

Table 1: Average PSNR of the learned filter tested on BSDS dataset [MFTM01]. We selected five input parameters λ in the training range of
each filter for testing. Our method is compared with Liu et al. [LPY16], Gharbi et al. [GCB*17] and Fan et al. [FCY*18].

tions qi j for pixel p = (x,y) are:

qi j = (x+ i+OX
i j(x,y),y+ j+OY

i j(x,y)), i, j ∈ {±1,0}. (5)

Given an input image I, the output Z of one deformable convolution
layer is computed by

Z(p) = ∑
i, j

w(p,qi j)I(qi j), (6)

where the weights are defined as:

w(p,qi j) =
exp(−||F(p)−F(qi j)||2)

∑i, j exp(−||F(p)−F(qi j)||2)
, i, j ∈ {±1,0}. (7)

The weight increases when the feature vector F(qi j) is close to
F(p), i.e., the pixel qi j is similar to pixel p in the image. Note that
the sampling coordinates may not be integer values, so we use bi-
linear interpolation to obtain the sampled value I(qi j) and F(qi j),
making the whole process differentiable for back propagation. Our
definition of the weights in Equ. (7) is similar to that of bilateral fil-
ter in Equ. (3). The difference lies in that we learn a network to map
the RGBXY coordinates into another feature space. In Equ. (7) we
do not introduce the variance term because we expect the network
to learn the scale factor itself given the input parameter.

In this work we employ 4 deformable convolution layers so that a
large reception field could be approximated. In each layer we refer
to the same feature maps F , which contains 5 channels, but change
the sampling offsets O. To define the offsets for one 3× 3 kernel
on x,y direction, we need 3× 3× 2 = 18 offset maps. For 4 layers
of deformable convolution 18×4 = 72 offset maps are required in
total. The deformable convolution block takes the target image as
input and uses the feature maps as well as offset maps to compute
the weighted average output.

3.3. Loss Function

The basic function of our model is to approximate an existing im-
age smoothing algorithm, so it is trained on image smoothing task.
Provided the input image I and the parameter λ, the model M pre-
dicts a filtered output M(I,λ). Since we can obtain the ground
truth output from existing image smoothing algorithms, denoted
by GT (I,λ), we directly use the mean squared error (MSE) as the
loss function:

L(I,λ) =
1
N
||M(I,λ)−GT (I,λ)||2, (8)

where N is the pixel numbers times the image channels.
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(a) (b) (c) (d) (e)

Figure 4: Results of color interpolation. (a) Original image. (b) Grayscale image with 3% color pixels. (c) DT [GO11], PSNR: 36.32 (top),
39.56 (bottom). (d) Levin [LLW04], PSNR: 36.95 (top), 39.61 (bottom). (e) Our method, PSNR: 37.12 (top), 40.51 (bottom).

4. Experiment

We trained the proposed model for image smoothing task, where
the target image and guidance image are identical. We selected
three representative image smoothing filters: weighted least square
(WLS) [FFLS08], L0 optimization [XRY*15] and relative total
variation (RTV) [XYXJ12], and trained our proposed model to
approximate them respectively, obtaining three deep filters (WLS
model, L0 model and RTV model). We adopted the PASCAL
VOC 2012 dataset [EVW*10] for training and the BSDS500 test
set [MFTM01] for testing. The training set consists of nearly 17000
images and the test set consists of 200 images. We randomly sam-
pled 7 smoothing parameters λ for each training image and gen-
erated the ground truth on randomly cropped 256× 256 patches
using existing smoothing methods. For testing we selected 5 pa-
rameters λ in the training range to filter images in the test set. The
learnable parameters are Ak and Bk illustrated in Equ. (4). Ak is
initialized with Gaussian distribution and Bk is initialized as zero.
We set batch size=8 in the experiment. We used the Adam opti-
mizer [KB14] and set the learning rate to be 0.01 at the begin-
ning, which would decrease to 0.001 during the training process.
We found that the model converged after around 10 epoches.

4.1. Filter Approximation

The statistics for filter approximation are exhibited in Table 1. We
use PSNR to measure the similarity to the ground truth output. We
compare our method with Fan et al. [FCY*18], Liu et al. [LPY16]
and Gharbi et al. [GCB*17]. Note that Liu et al. and Gharbi et al.
learned the smoothing model for fixed input parameter, while ours
and Fan et al. can learn variable smoothing parameter in one net-
work. Our model surpasses Liu et al. as well as Gharbi et al. and
has performance comparable to Fan et al. We attribute the difficulty
of learning L0 filter to its piecewise constant effect and the sharp-
ened edges that could not be expressed in a weighted average form.
Moreover, we find that as the smoothing strength increases, the fil-

ter is harder to learn because the sampling locations spread further.
Figure 3 provides qualitative examples for each filter.

Method
λ

Avg.
0.002 0.005 0.01 0.02 0.05

REGULAR 44.86 40.71 37.83 35.06 31.19 37.93
CONCAT 41.09 38.76 37.01 35.12 32.78 36.95

OURS-D3 43.85 40.34 38.05 35.93 33.54 38.34
OURS-D5 44.61 40.98 38.67 36.58 34.16 39.00
OURS-D7 44.03 40.85 38.72 36.68 34.28 38.91

Table 2: Average PSNR of different network structures evaluated
on L0 smoothing. See text for details.

(a) (b) (c) (d)

Figure 5: Feature maps visualization. We show the output feature
maps of our L0 model. The values were scaled into range [0,1] and
encoded in BGR channels. (a) Input image. (b) Feature channel 1-
3. (c) Feature channel 3-5. (d) Corresponding smoothed image.

We also evaluated other network structures: (a) replacing the de-
formable kernels with one regular 9×9 kernel (denoted as REGU-
LAR); (b) directly concatenating the algorithm parameter with in-
put image and removing the weights prediction layer described in
Equ. (4) (denoted as CONCAT); (c) Using our pipeline described in
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(a) (b) (c)

Figure 6: Sample points visualization. (a, b) Input image and sam-
ple points for different smoothing strength. The red dots indicate the
sampling points for averaging and the blue dots indicate the origin
points. (c) Smoothed results of the RTV model. Top row: λ = 0.002;
second row: λ = 0.01; third row: λ = 0.05

Sec. 2.5 but varying the dimensionality of feature map dF = 3,5,7
(denoted as OURS-D3, OURS-D5, OURS-D7 respectively). These
models were trained and evaluated on L0 optimization [XLXJ11]
and the result is provided in Table 2. Using deformable kernels and
weights prediction is superior to other alternatives and the choice
of feature dimensionality dF = 5 is sufficient.

4.2. Feature Visualization

To observe the feature maps learned by our model, we visualize
the output of the feature extraction block with BGR color channels.
The feature values are scaled to range [0,1]. Figure 5 shows the 1-3
channels, 3-5 channels of the feature maps. The feature maps are
well aligned with the edges in the output image, and the smoothed
region is dominated by one specific color, meaning that our network
can learn where to smooth and what to preserve, and assign appro-
priate feature vectors to each pixel. Figure 6 exhibits the sampling
locations for one pixel in the image. As the smoothing parameter
increases, the sample points move further from the origin, leading
to a smoother output. Moreover, most of the sample points lie in
the boundary of a smooth region.

4.3. Applications

Image smoothing filters have a wide range of applications. Prob-
lems requiring single image input can be directly tackled by our
model as well as previous deep implicit models. In this section we
select a few joint image filtering applications for illustration, in-
cluding color interpolation, depth map upsampling, saliency map

upsampling, flash/non-flash denoising and RGB/NIR denoising.
Note that Li et al. [LHAY19] trained two models for upsampling
and denoising respectively, and neither of them is capable of in-
terpolating sparse data. Different from prior work, our method can
tackle all of the tasks above by one model.

Color interpolation. Our model is capable of interpolating
sparse data because the data source can spread information to its
neighboring pixels during the sampling and averaging process. We
considered two scenarios in this experiment. The first task is to
restore the color channels from grayscale with randomly sampled
color pixels. We converted the image into YUV format and retained
the UV channels with 3% probability. We fed the grayscale im-
age into our model as guidance to obtain the feature maps and
offset maps, and then used them to filter the sparse color chan-
nels and a mask identifying the sampling pixels. The output color
map was constructed by dividing the filtered color channel by the
filtered mask. We compared our method with the classical opti-
mization based colorization method [LLW04] and domain trans-
form [GO11]. The results are showed in Figure 4. In this experi-
ment we use the learned WLS model with input parameter λ = 0.3.

We also evaluated our models’ performance of propagating user-
specified color strokes to the whole image. Under this setting it is
necessary to filter the color map for a few iterations. Our model
can produce feasible colorization results by propagating the sparse
input iteratively, as exhibited in Figure 9.

Depth map upsampling. Depth data collected from depth sen-
sors might have lower resolution than images captured by RGB
camera. It is necessary to upsample the depth map in many appli-
cations. We utilized our model to perform depth map upsampling.
The offset maps for smoothing usually lead to a large neighbor-
hood, which is unnecessary in this task. Therefore we only used the
feature maps and interpolated the unknown pixels by its neighbors
on the downsampled grid. We followed the idea of joint bilateral
upsampling [KCLU07] while replacing the guidance image with
the feature maps predicted by the network.

Method Bicubic GF JBF DJF Ours
4× 5.10 5.25 3.34 1.96 2.17
8× 8.26 8.15 5.50 3.60 3.56

Table 3: Average RMSE of depth map upsampling on the Mid-
dlebury dataset [HS07]. Our method is compared with guided
filter (GF) [HST10], joint bilateral filter (JBF) [KCLU07] and
deep joint filter (DJF) [LHAY19]. We used the RTV model with
λ = 0.003,0.004 for 4× and 8× upsampling respectively.

We evaluated our method on the Middlebury dataset [HS07].
The missing depth was completed using method in [LRL14].
Our method was compared with bicubic interpolation, guided fil-
ter [HST10], joint bilateral upsampling [KCLU07] and the deep
joint filter (DJF) [LHAY19]. Table 3 illustrates the statistics of 4×
and 8× upsampling. Note that the deep joint filter was trained di-
rectly for this task, but our model has comparable performance with
it. Besides, our method is superior to traditional explicit image fil-
ters. Figure 7 gives a qualitative comparison.

Saliency map upsampling. We evaluated our model on the task
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(a)                             (b)                             (c)                             (d)                             (e)                             (f)

Figure 7: Results of depth map upsampling. (a) Guidance image. (b) Ground truth. (c) JBF [KCLU07]. (d) GF [HST10]. (e) DJF [LHAY19].
(f) Our method. The first row shows 4× upsampling results while the second row shows 8× upsampling.

(a) (b) (c) (d) (e)

Figure 8: Example of saliency map upsampling. We estimated the saliency using method proposed in [YZL*13] on the 8× downsampled
images and upsampled them to the original resolution. (a) Input image. (b) Bicubic interpolation. (c) GF [HST10]. (d) DJF [LHAY19]. (e)
Our method.

(a) (b) (c)

Figure 9: Colorization using strokes. (a) Input grayscale with color
strokes. (b) Levin’s method [LLW04]. (c) our method.

of saliency map upsampling. We applied the method proposed
in [YZL*13] to estimate the saliency map on the downsampled im-
ages (8×). We randomly select 165 images from the MSRA1000
dataset [AHES09]. Then we used our model to filter the saliency
map upsampled by bicubic interpolation. We applied the L0 model
with λ = 0.01 in this task. Figure 8 shows two examples of the fil-
tering results and Table 4 reports the F1-score of the output saliency

F1-score Yang Bicubic GF DJF Ours
ODS 0.8012 0.8004 0.8097 0.7568 0.8115
OIS 0.9007 0.8808 0.8897 0.8095 0.8964

Table 4: F1-score of upsampled saliency maps evaluated on the
MSRA1000 dataset [AHES09]. We compared with GF [HST10]
and DJF [LHAY19] on both the optimal dataset scale (ODS) and
optimal image scale (OIS). The low resolution saliency map (8×)
was generated by Yang’s method [YZL*13]. We also listed the per-
formance of Yang’s method applied to full resolution (Column 2).

map using optimal dataset scale (ODS) and optimal image scale
(OIS). Compared with guided filter [HST10] and deep joint fil-
ter [LHAY19], our method achieved higher accuracy.

Flash/Non-flash and RGB/NIR denoising. Our model can per-
form cross-modality filtering, in which a clean image in one do-
main guides the filtering on a noisy image in another domain. We
adopted our model to filter non-flash image with flash guidance im-
age and to filter RGB image with NIR guidance image. As shown in
Figure 10 and Figure 11, deep joint filter [LHAY19] cannot handle
varying noise level while ours can be adjusted to different scenar-
ios.
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(a) (b) (c) (d)

Figure 10: Example of flash/non-flash denoising. (a) Guidance flash image. (b) Non-flash image. (c) Result of DJF [LHAY19]. (d) Result of
our method.

(a) (b) (c) (d)

Figure 11: Example of NIR/RGB denoising. (a) Guidance NIR image. (b) RGB image. (c) Result of DJF [LHAY19]. (d) Result of our method.

5. Conclusion

In this paper we propose a novel deep learning framework to ap-
proximate existing image smoothing filters. Different from previ-
ous work, we learn explicit kernels for weighted average filtering,
which could be adapted to joint image filtering applications. The
feature maps and offset maps are predicted by a fully convolutional
network. The filtering weights are defined by the affinity between
per-pixel feature vectors and the sampling locations are obtained
from the offset maps. We use stacked deformable convolution lay-
ers to filter the input image with the predicted weights and sam-
pling locations. Our model achieves high approximation accuracy
and serves as a general tool for other joint image filtering tasks
such as color interpolation, depth map/saliency map upsampling
and cross-modality denoising.

Our method also has a few limitations. Firstly, due to the limit of
sample numbers, our model’s performance degrades when smooth-
ing the image with extremely high strength. Secondly, as a tool for
joint image filtering, our model only utilizes the structural infor-
mation from the guidance image but neglects valuable information
from the target image. We desire to develop an architecture that can
switch between single image input and multiple images input. Be-
sides, Fan et al. proposed an unsupervised method to learn an image
smoothing filter [FYW*18], and we suggest that it is also possible
to learn an explicit form for their filter.
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