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Abstract
Video stabilization is necessary for many hand-held shot videos. In the past decades, although various video stabilization
methods were proposed based on the smoothing of 2D, 2.5D or 3D camera paths, hardly have there been any deep learning
methods to solve this problem. Instead of explicitly estimating and smoothing the camera path, we present a novel online deep
learning framework to learn the stabilization transformation for each unsteady frame, given historical steady frames. Our
network is composed of a generative network with spatial transformer networks embedded in different layers, and generates
a stable frame for the incoming unstable frame by computing an appropriate affine transformation. We also introduce an
adversarial network to determine the stability of a piece of video. The network is trained directly using the pair of steady and
unsteady videos. Experiments show that our method can produce similar results as traditional methods, moreover, it is capable
of handling challenging unsteady video of low quality, where traditional methods fail, such as video with heavy noise or multiple
exposures. Our method runs in real time, which is much faster than traditional methods.

CCS Concepts
•Computing methodologies → Computer Graphics;

1. Introduction

Video stabilization [MOG∗06, CHA06, GKE11, GF12, LYTS13]
is an important and widely studied problem in the community
of computer vision. The goal of video stabilization is to gen-
erate a stable, visually-comfortable video from input video with
jitters. In the past decades, masses of methods are proposed
to solve this problem. The majority of the proposed methods
tackle this problem via an off-line optimization, aiming at a
smoothed camera path, to obtain a global view of the whole in-
put video [LGJA09, LGW∗11, GKE11, GF12, GKCE12, BAAR14,
LYTS13]. Such methods are usually time-consuming. Meanwhile,
only a few methods achieved online stabilization by estimat-
ing homography [YSCM06, BHL14, JWWY14] or transforma-
tion [LTY∗16] between consecutive frames to smooth the camera
motion. Although these methods can produce satisfying steady re-
sults, they would crash when the feature extraction is destroyed for
video of low quality, such as heavy noise and multiple exposures.
On the other hand, different transformations and explicit models
designed to smooth the camera path always inherently define dif-
ferent undesired camera motions, which is hard to cover all the
cases. In contrast with most of the methods aforementioned, we
avoid defining jitter artificially, instead, come up with a deep frame-
work to learn the unstable patterns in videos and remove them in
an online and end-to-end fashion.

† S.-M. Hu is the corresponding author.

In recent years, deep convolutional neural networks have been
widely used in fields of computer vision and graphics, which are
proved to be efficient in most cases [KSH12, ZSQ∗17, HGDG17,
HZMH14,GEB16,KL17]. However, to our knowledge, hardly have
there been deep learning methods for video stabilization. Video jit-
ter is actually a disharmonious feeling perceived by human. Just
like other defects of visual media such as blurry and compositing
disharmony, which can be well removed by neural networks, it is
reasonable that video jitter is also possible to be repaired by deep
networks. The lack of deep video stabilization methods is mainly
caused by two reasons, the shortage of supervision training data
and the difficulty of problem definition specifically for convolu-
tional neural networks.

To address this problem, we propose a novel deep framework
for video stabilization. As to the training data problem, we choose
to use the novel dataset provided by Wang et al. [WYL∗18] re-
cently. The dataset is collected through a well-designed hardware
consists of two cameras, a standard hand-held camera and a camera
with a pan-tilt stabilizer. The device can simultaneously shoot sta-
ble and unstable video pairs from real scenes. The stable and unsta-
ble frame pair is corresponding to each other only with a negligible
parallax, and the transformation between them can be learned in a
supervised way.

In order to solve the problem of video stabilization in an
online manner, we proposed a generator-discriminator archi-
tecture to learn the video stabilization problem. We designed
an encoder-decoder generator with spatial transformer networks
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Figure 1: The overview of our framework. Our network takes historical stabilized frames and the incoming unsteady frame as input. The
output is a generated steady frame as historical condition and the corresponding transform parameters which are used to warp the unsteady
input frame. The generated steady frame, containing sufficient features, is in turn appended at the historical stabilized frames. The final
stabilization results are obtained by cropping the warped frame.

(STNs) [HKW11,JSZK15] embedded in the different layers to pre-
dict the stable frames for unstable frames. Since full convolutional
networks have weak ability to learn spatial transformations, the
spatial transformation is entirely learned by the STNs. The encoder-
decoder architecture can help those embedded STNs to be trained
without any manually designed loss functions other than the sim-
ilarity to the ground truth stable frame. Meanwhile, we defined a
discriminator network to determine whether the generated frames
are steady or not. The discriminator network somehow learns the
human-like ability to distinguish stable or unstable videos, and
helps the generator network to achieve a better ability of stabiliza-
tion.

We test our method on various public videos and casually shot
videos. Experiments show that our method can produce competitive
results as the traditional ones, and runs in real-time at 30 fps which
is much faster than off-line methods. Moreover, our method can
run effectively on many types of low quality video cases, such as
videos with heavy noise, multiple exposure videos or videos with
periodic watermarks, where the traditional methods may fail.

2. Related Work

Our work aims to generate a visually stable, temporally consistent
video from a jitter video in an adversarial way. This is closely re-
lated to the literature on existing video stabilization methods and
deep image/video processing, including generative adversarial net-
works (GANs).

2.1. Video stabilization

Hand-held videos normally needs post-processing video stabiliza-
tion techniques to remove large jitters. There is a rich history
in digital video stabilization [MOG∗06, CHA06, GKE11, GF12,

LYTS13]. Most of the digital stabilization techniques estimate the
camera trajectory from video content and then smooth it by remov-
ing the high-frequency component.

2D video stabilization methods estimate (bundled) homog-
raphy or affine transformations between consecutive frames
and smooth these transformations temporally. Pioneer works
[MOG∗06, CHA06] performs the low-pass filter on individual pa-
rameters to stabilize video content. Later, an L1-norm optimiza-
tion based method [MOG∗06] was proposed to synthesize cam-
era path using simple partial camera paths. Bundled camera model
[LYTS13] was introduced to optimize multiple local camera paths
jointly. Recently, Zhang et al. [ZCKH17] proposed a method which
optimizes geodesics on the Lie group embedded in transformation
space.

3D-based stabilization methods perform 3D scene reconstruction
[SSS06] to estimate camera trajectory. The first 3D stabilization
method [LGJA09] was proposed by using content-preserve warp-
ing. Liu et al. [LGW∗11] presented subspace video stabilization
which smooths long tracked features under subspace constraints.
Goldstein and Fattal [GF12] enhanced the length of feature tra-
jectories with epipolar transfer. Bai et al. [BAAR14] proposed a
semi-automatic stabilization algorithm which allows users to select
proper feature trajectories. [GKCE12] addressed the rolling shutter
issue in high-speed video.

In addition to the above methods, recently a 2D-3D mixed sta-
bilization approach was proposed to stabilize 360 video [Kop16].
Generally, 2D stabilization methods work in a wider scope and ef-
ficiently, while 3D-based methods are able to produce better visual
content.

Although previous global optimization methods have achieved
state-of-the-art stabilization for videos, the computing process is
usually off-line, which is not suitable for the popular live stream
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Figure 2: The detailed learning network architecture of our proposed method.

scenarios. Liu et al. [LTY∗16] recently proposed an online video
stabilization approach to compute warp functions for meshes of
each incoming frame using historical camera path. Inspired by their
work, we also present an online video stabilization method, using
a generative adversarial network instead. Our approach just warps
the unsteady video as closely to the steady one as possible with-
out clearly computing a smooth camera path as what has been done
in traditional feature based methods. This makes our method more
robust to low quality videos, such as noise, blur, and multiple ex-
posures, etc.

2.2. Deep video processing

In recent years, deep neural networks have been successfully
applied to various computer vision tasks including recogni-
tion [KSH12, SZ14, HZRS16], segmentation [SLD17, ZSQ∗17,
HGDG17], recoloring [HZMH14], content generation [GEB16,
IZZE17, ZPIE17] and image caption [VTBE15, KL17] etc, achiev-
ing comparative or even superior performance compared to tra-
ditional artificial algorithms. Considering the space and temporal
consistency of videos, similar to some traditional 2D video ap-
plications, deep learning methods can also be exploited to cam-
era pose estimation [NS17], action recognition [FPZ16, LWH∗17,
LSX∗17, DSG17], deblurring [SDW∗17, KLSH17], predicting
optical flow [DFI∗15, IMS∗17], dynamic generation [VPT16,
XWBF16] and frame synthesis [NML17, LYT∗17] etc. Recently
Wang et. al. [WYL∗18] aimed to exploit a deep convolutional neu-
ral network for video stabilization.

To learn the temporal coherence among video frames, two or
more consecutive videos frames are usually fed to convolutional
neural networks, or frames could be fed to a recurrent neural net-
work (RNN) [LWH∗17,LSX∗17] to learn the long-term dependen-
cies. Our stabilization network also uses a recurrent structure to
smooth the affine transformation in case of large jitters.

Generative adversarial network (GAN), which is composed
of a generative network, called generator, and a discriminative
one, called discriminator, was first proposed by Goodfellow et
al. [GPAM∗14] to generate a realistic version for an input noise
image. The network is trained in an adversarial fashion by discrim-
inating the faked version generated by the generator from the in-
put ground truth till the discriminator can not tell the differences.
Recently, GANs have been mainly used in various image content
generation tasks [PKD∗16, MML16, LTH∗17, LLDX17, IZZE17,
ZPIE17].

Our GAN for video stabilization does not directly generate a fi-
nal steady pixel-wise image for each input unsteady frame; instead,
the generated pixel-wise image is serving as the cropping free con-
ditional input and the transformation parameters are gained to com-
pute an online affine transformation for each input unsteady frame.
The final steady video will be obtained by applying the online warp
on each unsteady video frame.

3. Video stabilization network

In this section we describe the details of our proposed video sta-
bilization network. Figure 1 shows the overview of our network.
As our stabilization network works online, it only takes the histor-
ical stabilized frames and the incoming unsteady frame as input.
The output is divided into two parts, a network-generated steady
frame and the corresponding parameters of transformation, which
is used to warp the input unsteady frame. The generated version of
the steady frame is auto-completed by the network in the cropped
area which is produced due to the stabilization process. The final
stabilization results is obtained by cropping the warped frame. Par-
ticularly, we use the generated non-cropping frames as the subse-
quent steady inputs since they have the same size as the input frame
and contain sufficient features. Before we go deeper into the net-
work, we first introduce the training data.
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3.1. Training data

Training data plays a key role on deep learning methods. In the
problem of video stabilization, frame-by-frame correspondence un-
stable/stable video pairs are often rare to obtain. We use the training
dataset proposed by Wang et al. [WYL∗18] recently to train our
network. This dataset contains 44 stable and unstable video pairs
captured in the extensive outdoor scenes including road, buildings
and vegetation. The correspondence of the video pairs is guaran-
teed by a well-designed hardware consisting of a normal hand-held
camera and a camera with a pan-tilt stabilizer. Each video clip lasts
20-30 seconds or longer. When split into frames, the dataset gives
more than 20,000 training samples.

3.2. Transform-aware encoder-decoder

Instead of directly learning the spatial transformation parameters
at the end of a network, we predict the stabilized frame using an
encoder-decoder framework in a generative manner. Different from
most of encoder-decoder frameworks which can only handle tasks
like pixel translation [IZZE17, ZPIE17], our framework need to be
transform-aware. Figure 2 illustrates the architecture of our net-
work. The encoder part of the network is basically composed of
conv layers, of which different spatial transformation networks are
placed in front or in middle. The decoder part is composed of de-
conv layers with skip connections to the corresponding conv layers.

Since a single unsteady frame is insufficient for the network to
infer the stabilizing transformation, the inputs of our network in-
clude both the incoming unsteady frame It at time t and 5 sta-
bilized sample frames evenly spaced during the last one second.
Consider that our experimental video plays at 30 fps, we use St ={

It−7
s , It−13

s , It−19
s , It−25

s , It−31
s

}
as the conditional input frames at

time t. St is converted to gray-scale before fed to the network and
It retains RGB mode. So the total number of input channels is 8.
As fully connected layers are contained in our work, all the inputs
are resized to the size of 256×256 before fed into the network.

During the training phase, the conditional input St

is replaced by the ground truth video frames Gt ={
It−7
gt , It−13

gt , It−19
gt , It−25

gt , It−31
gt

}
, and the network’s output is

supervised by the ground truth steady frame It
gt .

It and St are firstly fed into ST N0 to perform an initial warp T0
on It . The purpose of this step is to utilize the gradient backward
propagated by the encoder to efficiently estimate a pre-warp of It

as properly as possible. Then It and St are respectively pushed into
parameter-shared conv layers to calculate their feature maps. These
feature maps will be concatenated together only when they reach
an inner STN. The reason why St and It ’s feature maps are not con-
catenated together is to ensure the effectiveness of training. Frames
in St are much more similar to the ground truth It

gt than It since
they are both steady. So the network tends to plagiarize frames in
Gt rather than learn to transform It in the process of training if It

and St ’s feature maps are not separated.

Each spatial transformation network ST Ni consists of a light con-
volutional localization network to summarize the current feature
map to the size of 4× 4× 16, followed by a fully connected layer

to regress the feature to a 2× 3 affine transformation matrix T t
i .

Then warp is performed by the grid generator and sampler next us-
ing T t

i . Note that the warp operation occurring in the inner block
is also needed to be applied in the skip connections, since the fea-
ture map should be aligned. The cross multiplication from T t

0 to
T t

4 are computed as the final transformation. We found that affine
transformation is a proper choice to stabilize videos according to
our experiments, and based on the traditional stabilization meth-
ods. In our case, affine transformation is more conducive to the
convergence of network training. We also tried to use a homog-
raphy transformation instead, however, there was no promotion of
performance found.

The advantage of our encoder-decoder architecture over those
learning the transformations directly at the end of the network is
that our framework can make use of the information of each layer
directly, so both the low-level and high-level feature correlations
are considered to produce the final transformations. Our experiment
also shows that a single ConvNet with the transformation only re-
gressed at the end is hard to train for the spatial alignment task by
optimizing the similarity loss like L1 or L2 distance. Extra condi-
tional manual features, e.g., matched feature points distance, are
required to guide the training. An insight of this phenomenon is
that some low-level features are submerged in the deep layers and
the correct transformation cannot be found just using the high-level
features. Our network, on the contrary, can integrate multi-level
cues while encoding the features and can be well trained directly
just using the video pairs.

The output of the encoder-decoder network includes two parts,
i.e, the predicted steady frame It

s generated by the decoder and the
affine transformation T t computed as the cross production from T t

0
to T t

4 orderly. We can warp the input It by T t to get the warped
version of the stabilized frame It

warp. It
s and It

warp have consistent
content since the other the conv and deconv layers have little ability
to learn spatial transfer, while It

warp is much more clear. However, It
s

is useful as we choose it as the subsequent conditional input. It
s has

size consistency to the former frames while still has strong features
to analysis stabilization. The generated frames and corresponding
warped frames are shown in Figure 3.

Our method improves [WYL∗18]in the following aspects. First,
the architecture of [WYL∗18] is a single STN but with the local-
ization network replaced by a ResNet50 model. It regresses warp
parameters only at the end of the network. Our method utilizes a
transform-aware encoder-decoder with multiple STNs to further
support deeper feature map transformation. Second, [WYL∗18]
needs extra pre-computed matched feature points for training,
which can have alignment errors due to the parallax. Their model is
hard to converge without such kind of pre-computed feature match-
ing. Our network does not require any pre-processing of hand-craft
feature matching, since it directly learns how the generated frame
is approaching the steady ground truth frame. Third, both methods
need historical steady frames as conditional inputs, however the
steady frames of [WYL∗18] are warped frames with black borders.
These black borders will disturb the network since they are chang-
ing. Our method takes the generated frames as steady frames where
the black borders no longer exist.
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Input Generated Warped Output

Figure 3: Illustration of generated frames and warped output
frames for the input frames selected from three videos.

3.3. Adversarial training

In this part we describe the training process of our network. Like
lots of inharmonious factors, the video jitter is easily perceived by
humans but difficult to be defined by the computer. Human can eas-
ily perceive the jitter of the video content even in poor picture qual-
ity such as heavy noise or blur, however many traditional stabiliza-
tion methods will fail in these cases due to the loss of feature points.
This observation inspires us to introduce a discriminator network to
learn the human-like ability to perceive stable and unstable frames,
and be adversarial with our encoder-decoder generator to help it
to achieve a better ability of stabilization. Before we introduce the
discriminator, we firstly talk about the training of the generator.

Thanks to the proposed encoder-decoder architecture, our gener-
ator network only needs the supervision of ground truth frame It

gt to
learn the stabilization transformation. We make our generator’s out-
put to approximate the ground truth by L1 loss and the vgg19-net
feature similarity. Although L1 loss is efficient, it can not capture
the high-frequency part well. So we use the feature similarity out-
put from a pre-trained vgg19-net as a reinforcement to the L1 loss.
Finally, the stabilization loss is computed as:

Lstab(I
t , It

s) = λ1||V gg19(It)−V gg19(It
s)||+λ2||It − It

s||, (1)

where λ1 = 100 and λ2 = 100 are weighting parameters.

Fully convolutional networks(FCNs) has strong capacity to sum-
marize patterns in the local area. Meanwhile, stability happen to be
strongly related to the local change of an image. So we adopt an 8
layers fully convolutional network D1 to discriminate the stability
of a piece of video in training. D1 has the same conditional input
Gt as the generator. The loss function to train D1 is designed as
LSGAN [MLX∗17], since the L2-form loss is proved to be more
stable during training and generates higher quality results, as pre-

vious works demonstrated. The loss function computed as:

LD1 = ||D1(G
t , It

gt)||22 + ||1−D1(G
t , It

s)||22 (2)

Temporal consistency is also guaranteed in the manner of ad-
versarial training. Since our task is stabilization, the temporal
consistency could be regard as the same matter. We adopt a
same network D2 as D1 but have a conditional input of At ={

It−1
s , It−2

s , It−3
s , It−4

s , It−5
s

}
and to judge the stability of the ad-

jacent stabilized frames. And make the generator to be adversarial
with it. We also tried the Siamese framework to explicitly optimize
the inter-frame difference, but got similar effect. The loss function
to train D2 is similar to D1:

LD2 = ||D2(A
t , It

gt)||22 + ||1−D2(A
t , It

s)||22. (3)

Be adversarial with D1 and D2, finally the generator’s loss is:

LG = Lstab +D1(G
t , It

s)+D2(A
t , It

s). (4)

3.4. Implementation details

The activation functions used in our network are LeakyReLU with
negative-slope set to 0.2 in the encoder and discriminator, and
ReLU in the decoder except the last deconv layer. Weights are ini-
tialized according to a normal distribution (µ is 0 and σ is 0.02),
while the bias of the STNs are set to identical transformations.
Adam optimizer is used with β1 = 0.5 and β2 = 0.999. We trained
the network for 40 epochs; each epoch has 30000 iterations. Batch-
size is set to 1. The learning rate is set to 2e−4 initially, and linearly
reduced to 0 in the last 20 epochs. In the test phase, we repeated the
first frame with 30 times, and added these frames to the head of the
video. These repeated frames serve as the historical steady frames.

4. Results and discussions

In this section, we first introduce the criterion used to evaluate the
results of video stabilization. Then we perform ablation studies to
validate our stabilization framework. After that we quantitatively
compare our method against previous methods on a public videos
set from [LYTS13] and conduct a user study to validate our ap-
proach with different effects imposed on videos captured by our
own hand-held devices.

To make a quantitative evaluation, we follow the standards in-
troduced in [LYTS13], namely, cropping ratio, distortion and sta-
bility. The stabilization results are considered to be good when the
value of these metrics approaches 1. For clarity, we briefly explain
these three quantitative metrics.

Cropping ratio measures the ratio of the area remained in the
stabilization results after the black boundaries are cropped. A larger
ratio means less original content cropping and hence better quality.
The per-frame cropping ratio is the scale factor of homography be-
tween input and output frames during the stabilization. Cropping
ratio of the whole video is averaged among all the frames of the
video.

Distortion describes the degree of distortion of stabilization re-
sults compared to original ones. Distortion value for each frame is
computed as the ratio of the two largest eigenvalues of the affine
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Figure 4: Comparison with 10 publicly available videos in terms of three metrics: cropping ratio, distortion and stability.

part of the homography. The smallest distortion value among all
frames is defined as the distortion score of the whole video.

Stability evaluates how smooth a video is. Again, follow-
ing [LYTS13], frequency-domain analysis of the camera path is
used to compute the value of stability. Specifically, the rotation and
translation sequences from all the homography transform between
consecutive frames of the resulting video are regarded as two tem-
poral sequences and the ratios of the lowest frequencies compo-
nents(2nd to 6th) over the full frequencies (the DC component is
excluded) are computed for the two sequences. The smaller ratio is
regarded as the stability score of the stabilization results.

We select ten public videos from [LYTS13] as the test dataset for
all the evaluations afterwards since these videos were commonly
tested among previous methods [LGJA09,LGW∗11,GF12,GKE11,
LYTS13, LTY∗16].

4.1. Ablation studies

Currently our network is trained with a hybrid of L1 loss, VGG
loss, and spatial-temporal GAN loss. L1 loss is to make the gener-
ated image close to the ground truth, and the VGG loss is to make
the generated image have a similar deep feature as the ground truth
beyond appearance similarity (to better serve as historical steady
input). The two GAN losses is to respectively ensure the generated
frames to be equally distributed with the stable video frames in the
long-time-range and the adjacent frame range. We study the effects
of these losses by removing them severally. We have tried four con-
figurations: 1) without LD1 , 2) without LD2 , 3) without LD1 +LD2 ,
4) without VGG loss.

Table 1 shows the ablation studies for training losses. When dis-
carding LD1 , the results descends due to the lack of long-time-range
temporal supervision. Things also happen when LD2 is removed.
We can also find that LD1 affects distoration more while LD2 affects
cropping ratio more. When both LD1 and LD2 are removed, the sit-
uation is aggravated. We found that VGG loss also has an effect on
the results. This is mainly because the VGG loss forces the gener-
ated image to be similar to the real steady frame, which makes it
more suitable to be as a historical steady frame.

Table 1: Ablation studies for training losses. Averaged cropping
ratio, distortion, stability of w/o LD1 , w/o LD2 , w/o LD1 +LD2 , w/o
V gg and Ours are listed.

Method cropping ratio distortion stability
w/o LD1 0.7870 0.8022 0.8520
w/o LD2 0.6936 0.8485 0.8686
w/o LD1 +LD2 0.7339 0.8303 0.8350
w/o V gg 0.7598 0.8365 0.8497
Ours 0.8221 0.9022 0.8488

In order to make the features free to transform in arbitrary en-
coding layers of the network, we add STNs in deeper layers of the
network. Since the spatial dimensions of feature maps from the last
3 conv-deconv blocks are too small, we did not use STNs in the
inner-most three conv-deconv blocks. To explore how each STN
impacts the network output, we drop each of the STNs respectively.

Table 2: Ablation studies for STN layers. Averaged cropping ratio,
distortion, stability of w/o ST N0, w/o ST N1, w/o ST N2, w/o ST N3,
w/o ST N4 and Ours are listed.

Method cropping ratio distortion stability
w/o ST N0 0.8044 0.8880 0.8581
w/o ST N1 0.8082 0.8991 0.8542
w/o ST N2 0.8174 0.9172 0.8559
w/o ST N3 0.8180 0.9193 0.8485
w/o ST N4 0.8189 0.9205 0.8435
Ours 0.8221 0.9022 0.8488

Table 2 shows the ablation studies for STN layers. Basically we
can find that only removing one STN has similar effect on the re-
sults. That is because while removing one STN, the role of the STN
will be replaced by the STNs of other layers to a certain degree in
the training phase.

We also studied the effect of the number of conditional input
frames on the results. Currently we select 5 historical stabilized
frames equally spaced during the last one second serving as our
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conditional inputs. The choice of the number of frames is empiri-
cal, as we believe the last one second is a proper time span to infer
the stabilizing transformation, and the input feature thickness is ap-
propriate for training. In order to study the influence of the condi-
tional inputs, we fed the network with less or more previous frames
with the same interval as our conditional inputs.

Table 3 shows the ablation studies for the conditional input. Ba-
sically, we can find that the more the conditional frames input,
the better the result is. This is not surprising since more frame
means stronger temporal supervision and more information. How-
ever, more frames also make the feature map bloated and decrease
the convergence speed of the model training. In our experiment,
when the number of conditional input frames exceeds 5, the result
promotion becomes small.

Table 3: Ablation studies for the conditional inputs. Averaged crop-
ping ratio, distortion, stability of with less frames, with more frames
and Ours are listed.

Method cropping ratio distortion stability
with less frames 0.6435 0.9143 0.8382
with more frames 0.8120 0.9390 0.8558
Ours 0.8221 0.9022 0.8488

4.2. Quantitative evaluation

We compare our online learning method with both traditional of-
fline methods [LGJA09,LGW∗11,GF12,GKE11,LYTS13] and on-
line method [LTY∗16].

The detailed data are shown in figure 4, based on the results pro-
vided by the corresponding authors or found on their project pages
(missing results are left blank). When compared to the state-of-the-
art online method [LTY∗16], we can see from the first 6 videos,
overall, our method performs better under the cropping ratio and
distortion metrics. This is because of the Meshflow [LTY∗16]
method computed warp functions for meshes of the frame while
our method predicts an affine transform for each frame, i.e. re-
garding the full resolution of the frame as a single mesh. So, our
method would ignore some detailed local smoothness during sta-
bilization, which in turn keeps a larger cropping ratio and less
distortion. Comparing with offline optimization methods seems a
little unfair for our method since the future frames are not avail-
able for stabilizing the current frame. As a result, the stability
score of our method is lower than those methods. This can be
further demonstrated on a category-wise comparison against state-
of-the-art offline method [LYTS13] in figure 5, where we select 3
videos for each category (including Regular, Quick Rotation, Quick
Zooming, Parallax, Running and Crowd), classified in terms of
scene type and camera motion ,from the publicly available video
set [LYTS13]. It can be drawn from this figure that our method
achieve a slightly better results only among videos with quick ro-
tations. This might merely be the reason that our learning network
has seen such quick rotation videos during the training process be-
fore.

Overall, although our online stabilization learning framework

obtains lower stability than offline methods or state-of-the-art on-
line method inevitably, our method can run faster than all these
methods, and the averaged running time is given in Table 4.

Table 4: Running time performance. The FPS(frames per second)
of typical offline and online methods are listed.

Method FPS
Bundle Camera [LYTS13] 3.5
MeshFlow [LTY∗16] 22.0
Ours 30.1

4.3. User study

In order to validate the robustness of our method when the fea-
tures of the frame content are difficult to be reliably tracked for
some low-quality videos. Here, we introduce 4 common kinds of
low quality videos: Camera lens blur is commonly noticed in pin-
hole cameras, where objects away from the focal plane will be
blurred; noise videos are easy to be captured when the lighting
condition becomes dim; multiple exposures would result in dou-
ble vision or ghosting; watermarks are commonly used for Internet
videos aiming for copyright protection. These effects would cause
the feature tracking procedure to be interrupted frequently or even
to fail. Figure 6 presents the 4 kinds of low quality video frame,
and we use Gaussian noise to demonstrate the noise effect.

We captured 4 casual videos and each was applied with the afore-
mentioned effects, resulting in 16 low quality videos.The three
quantitative metrics mentioned above are estimated by homogra-
phy matching, and when evaluating low quality videos, the fea-
ture matching fails. So we conducted a user study to evaluate video
stability. We compare our method against the commercial offline
stabilization software Adobe Premier Pro CC 2018. As far as we
know, the method described in [LGW∗11] was incorporated into
the Adobe Premiere stabilizer. All the low quality videos were fed
to both Adobe Premiere stabilizer and our method to generate the
final results. However, Adobe Premiere stabilizer failed to generate
results for 2 videos with heavy Gaussian noise, which were elim-
inated from the user study. 34 people recruited from the campus
were asked to figure out which video seemed more stable for the
randomly permuted 14 pairs of stabilization results, or indicate a
’indistinguishable’, regardless of cropping ratio or sharpness.

The averaging percent of choices among all the participants for
each kind of low quality effect was shown in figure 7. As can be
seen from the figure, all the participants picked the results of our
method as the more stable, except the camera lens blur effect, which
basically agreed with our discussions. Our method does not explic-
itly extract feature points for path estimation and smoothing, so the
failure of feature point extraction or matching in low-quality videos
does not impact on our approach.

4.4. Limitations

Our current video stabilization learning network has its own limita-
tions. First, the network only generated a global affine transforma-
tion for each video frame, which omitted the local transformations.
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Figure 5: Comparison with state-of-the-art offline method in different categories.
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Figure 6: Low quality effects. From top to bottom: original frame,
frame with low quality effect, result frame of Adobe Premier stabi-
lizer, result frame of our method.
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Figure 7: User study results comparing Adobe Premier stabilizer
with our methods under different low quality effects.

Dividing the video frame into meshes as in [LTY∗16] and learning
transformations on these smaller meshes seems to be a promising
approach. Second, the generated affine transformation only consid-
ers transformation from the previous frame, which results in a weak
temporal coherence. A more complex RNN could be tried in the fu-
ture to learn the long term dependencies in the temporal domain.

5. Conclusions

In this paper, we proposed to solve the traditional video stabiliza-
tion problem using a novel online GANs. This learning network
regarded the video stabilization as an affine transformation gen-
eration between consecutive video frames instead of smoothing a
camera path as in traditional feature tracking based methods. The
experiments demonstrated that our method was comparable to cur-
rent state-of-the-art online methods on a public video set and more
suitable for low quality videos, especially when the feature tracking
is unreliable or impossible.
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