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Abstract
Sharp edges are important shape features and their extraction has been extensively studied both on point clouds and surfaces.
We consider the problem of extracting sharp edges from a sparse set of colour-and-depth (RGB-D) images. The noise-ridden
depth measurements are challenging for existing feature extraction methods that work solely in the geometric domain (e.g. points
or meshes). By utilizing both colour and depth information, we propose a novel feature extraction method that produces much
cleaner and more coherent feature lines. We make two technical contributions. First, we show that intensity edges can augment
the depth map to improve normal estimation and feature localization from a single RGB-D image. Second, we designed a novel
algorithm for consolidating feature points obtained from multiple RGB-D images. By utilizing normals and ridge/valley types
associated with the feature points, our algorithm is effective in suppressing noise without smearing nearby features.

Keywords: point-based graphics, modelling, object scanning/acquisition
ACM CCS: I.3.3 [Computer Graphics]: Picture/Image Generation — Digitizing and Scanning I.3.5 [Computer Graphics]:
Computational Geometry and Object Modelling — Curve, surface, solid, and object representations

1. Introduction

Sharp features carry important structural and semantic information
of a surface. They are useful in a variety of downstream geometric
processing tasks, including segmentation [dGGDV11, CYW15],
simplification [KKK06], stylization [XCJ*09, PKG03] and defor-
mation [GSMCO09]. Man-made objects, in particular, can be well
described by the network of sharp features alone (together with
surface normals along them) [MZL*09]. As a result, extensive
research has been conducted on robust detection of sharp features
on discrete surfaces as well as unorganized point clouds (see next
section for a brief review).

Driven by their low prices and compact sizes, consumer-level
colour-and-depth (or RGB-D) sensors, such as Microsoft Kinect,
are becoming increasingly popular in three-dimensional (3D) scan-
ning and modelling [CLH15]. With the advance in registration
and reconstruction algorithms, highly detailed geometry can be
recreated from continuous RGB-D video streams (e.g. [NIH*11]).
However, given only a few RGB-D images (e.g. Figure 1a), it
remains difficult to reconstruct a clean and feature-preserving
point cloud or surface. Such difficulty, in turn, hinders the detec-

tion of sharp features using current geometry-based methods (e.g.
Figures 1d and e).

We propose a novel method for extracting sharp features from
RGB-D data. Unlike existing methods that are solely based on
geometry, we exploit the complementary information in both colour
and depth channels to produce less noisy and more coherent features.
Sharp features are located in regions that exhibit abrupt changes in
surface normals. Due to the inherent noise and incompleteness in the
depth map, it is difficult to robustly estimate surface normals from
the depth points alone, not to mention the variation of normals. On
the other hand, on a diffuse and texture-less surface in a shadow-free
environment, colour changes are directly correlated with normal
variations. Motivated by these observations, for each RGB-D
image, we combine prominent 2D edges in the colour channel with
3D depth points to more accurately localize feature points (Figure
1b). The combination of the two channels also allows our method
to work even for textured surfaces (e.g. the floor tiles in Figure 1a)
and complex lighting conditions (e.g. shadow on the floor). If
multiple RGB-D images capturing an object from different views
are available, we merge feature points obtained from each RGB-D
image to form a more complete set of feature curves (Figure 1c).
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Figure 1: Work flow of our method (a–c) and comparison with existing geometry-based feature detection methods (d and e). Given an input
sequence of 10 RGB-D images of the Cart captured by Kinect (a, showing three images), our method first extracts 3D feature points from each
image (b, red for ridge points and blue for valley points), then consolidates feature points obtained from all images and forms feature lines
(c). By exploiting both intensity and depth information, our result is significantly less noisy and more coherent than features detected directly
on the registered point cloud (d, using [MOG09]) or on the reconstructed surface (e, using [YBS05]). The point cloud in (d) is registered
by [HKH*10] and has been filtered by Edge Aware Resampling [HWG*13]. The surface in (e) is reconstructed using a feature-preserving
method [OGG09] from the filtered point cloud.

Contributions: To the best of our knowledge, our method is the
first sharp feature extraction method that harvests both colour and
depth information in multiple RGB-D images. Besides proposing
a two-stage framework (Figures 1b and c), we make the following
technical contributions at each stage:

1. Feature extraction from single RGB-D image (Section 3): We
show that edges in the colour channel can augment the depth
map to improve both the estimation of normals and localiza-
tion of feature points.

2. Feature merging from multiple RGB-D images (Section 4): We
design a method for consolidating feature points equipped with
surface normals and feature types. Thanks to a novel definition
of feature affinity, our method can handle large amount of noise
without smearing nearby features.

2. Related Works

In the following, we briefly review previous works relevant to our
goal (sharp feature extraction) and technical contributions (RGB-D
feature analysis and point consolidation).

Sharp feature extraction: Sharp features on a surface are closely
related to ridges and valleys, which are the loci where the maxi-
mum (or minimum) curvature is maximal (or minimal) along the
maximal curvature directions. Given a discrete mesh representation,
extracting ridges and valleys relies on the estimation of differential
properties such as normals and curvatures, which can be obtained
by globally [OBS04] or locally [HG01, YBS05, KK06] fitting a
polynomial or employing discrete differential operators [HPW05,
YBYS07]. Besides ridges and valleys, other types of line features
on surfaces have also been proposed that consider either local ge-
ometry [KST08] or in conjunction with other aspects such as view
direction [DFRS03] or perceptual saliency [WB01].

If the input is an unorganized point cloud, methods have been
proposed to extract features directly from the points without the

need for surface reconstruction. Without a mesh structure, several
methods [GWM01, PKG03, DVVR07] obtain shape information
within a spatial neighbourhood of a point using principal compo-
nent analysis (PCA). PCA provides the directions and magnitude of
principal shape variation, from which decision can be made regard-
ing whether the point is a feature and, if so, the type of the feature
(e.g. a sharp edge or a corner). Continuous feature lines are then
formed by graph-based methods, such as constructing and prun-
ing a minimal spanning tree. Beside PCA, local shape information
can also be learned using the geometry of Voronoi cells [MOG09],
clustering estimated point normals [WHH10] or fitting truncated
Fourier series [AMMK13]. While these methods use existing points
as candidates of feature points, others (like us) create new feature
locations. Daniels et al. [DHOS07] project particles towards the
intersections of estimated planes around the feature, while Lee and
Bo [LB15] first fit smooth developable surfaces to the points and
then construct feature curves as the surface intersections.

The majority of the mentioned feature extraction methods works
by examining the local geometry, which can make them sensitive to
high-frequency noise. To improve the quality of results on noisy in-
puts, one can first filter the point cloud or surface to suppress noise
while retaining the salient features. To this end, various feature-
preserving filtering methods have been proposed. For point clouds,
Lipman et al. [LCOLTE07] introduced the locally optimal projector
(LOP) that projects particles towards local L1 median of the points.
Variants of the method were proposed to achieve a more even dis-
tribution [HLZ*09] or better preserve sharp features [HWG*13].
Recently, Sun et al. [SSW15] proposes a feature-aware denoising
method based on L0 minimization that maximizes sparsity. For
meshes, impressive feature-preserving filtering results have been
achieved using bilateral filtering [FDCO03, ZFAT11], mean curva-
ture flow [HP04], and L0 minimization [HS13]. Piece-wise smooth
surfaces with well-defined sharp features can also be directly recon-
structed from noisy point clouds using methods such as moving-least
squares [FCOS05], kernel regression [OGG09] or L1 minimization
[ASGCO10].
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Geometric features from RGB-D: Due to depth distortion, ex-
tracting geometric features directly from RGB-D images is difficult
and has received much less attention. Some methods only detect
contours that lie at depth discontinuities (also called jump edges,
and occluding/occluded edges) [LPVV11, ZK15]. We know of only
two methods for detecting sharp geometric features from a single
RGB-D image [SLG13, CTC13], which we shall discuss in more
details.

Schafer et al. [SLG13] apply 2D Canny edge detector to both
depth and intensity channels captured by time-of-flight (ToF) cam-
eras. Intensity edges capturing non-geometric features, such as
shadow and texture, are pruned by thresholding the variation in
depth or in the gradient of depth. Due to the inherent noise in the
depth channel and its gradient, it is difficult for this method to
produce clean and complete set of intensity edges corresponding
to sharp features (see comparison in Figure 5). Another important
drawback of this method is that it does not produce 3D locations of
feature points.

Working only in the depth channel, Choi et al. [CTC13] select a
subset of the depth points whose local neighbourhood exhibit large
variation in locally estimated normals. However, these normals, and
hence the resulting feature points, are sensitive to noise in the depth
channel. Furthermore, as depth points rarely lie exactly on a sharp
feature, the output is often made up of thick bands of points around
the feature (see comparison in Figure 7).

The combination of colour and depth channels has been used for
segmentation [CLW*14], primitive detection [HM15] and object
recognition [KBK15, LJHW15] from RGB-D images. However,
none of these methods specifically harvests the complementary in-
formation of colour and depth for extracting sharp features. On
the other hand, the features produced by our method can poten-
tially augment these methods particularly when the inputs contain
feature-rich objects.

Point cloud consolidation: To combine feature points extracted
from multiple images, we draw inspirations from existing meth-
ods for consolidating noisy point clouds onto either surfaces
[LCOLTE07, HLZ*09, HWG*13, SSW15] or curves [CTO*10,
TZCO09, HWCO*13]. Common to these methods is minimizing
an energy that penalizes deviation of points from its neighbours as
well as non-uniform distribution. Our consolidation of feature points
adds to this line of research by additionally considering normals and
ridge/valley type that are available to us at the feature points in defin-
ing the deviation term, with the goal of better differentiating nearby
features.

3. Computing Feature Points from One RGB-D Image

Extracting sharp features directly from the depth channel is chal-
lenging due to the significant amount of noise and possible missing
data. Our idea is to exploit the additional information provided by
the colour channel. Our motivating observation is that, in an ideal
setting where a diffuse, texture-less surface is lit with ambient light-
ing, variation in surface normal is directly captured by the change in
colour values. Since the colour channel typically has less distortion
than the depth channel, strong edges in the colour channel would of-
fer a more direct and accurate indication of (the projection of) sharp

Figure 2: The four steps in computing features points from a single
RGB-D image: (a) 2D intensity edges (cyan) extracted from the
colour channel; (b) 3D Hermite samples estimated from the depth
channel (the depth map is shown in the insert); (c) pruned 2D
intensity edges, classified into ridges (red), valleys (blue) and ridge-
contours (purple); (d) computed 3D feature points with normals.
All normals are coloured by their directions.

features. Although edges in the colour channel may also correspond
to non-geometric features (e.g. texture, shadow) in more practical
settings, we may utilize the depth information to differentiate such
edges from those edges capturing sharp features.

Our method for single-image feature extraction proceeds in four
steps, as shown in Figure 2. We start by extracting strong edges
from the colour channel, which we call intensity edges (see (a)). As
we expect the surface to be continuous and smooth away from these
intensity edges, we can robustly estimate Hermite samples (i.e. 3D
positions and normals) from the depth channel within neighbour-
hoods bounded by the intensity edges (see (b)). These Hermite
samples, in turn, can prune intensity edges that do not correspond
to geometric features (see (c)). Finally, the 2D intensity edges are
combined with 3D Hermite samples to solve for the 3D feature point
locations (see (d)).

We next detail each step in order. Our primary contributions lie
in the second step, where we use 2D intensity edges for robustly
estimating 3D depths and normals (Section 3.2), and in the last step,
where we introduce a least-square formulation of feature points that
combine both 2D and 3D constraints (Section 3.4).

3.1. Extracting 2D intensity edges

Our computation is performed on a 2D grid structure instead
of directly on the pixels, for several reasons. First, the depth

c© 2016 The Authors
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Figure 3: Grid structure.

channel usually has lower resolution than the colour channel. Sec-
ond, due to depth errors such as noise, missing data and mis-
alignment with the colour channel, the effective resolution of
the depth channel is even lower. We therefore consider a grid
where each grid square contains k × k pixels. The value of k

should be large enough to accommodate errors in depth values
but small enough to minimize smearing of close-by features. We
found that k = 5 offers a good balance in our experiments (see
Figure 3).

We use the grid-based edge detector of [Lin98] to extract intensity
edges. We first compute the intensities at pixels by converting the
RGB colour to YCrCb colour and taking the Y channel (luminance).
The detector requires second- and third-order intensity derivatives at
the grid points. To reliably obtain these derivatives, we first perform
a Gaussian filtering with a kernel size of 25 pixels over the intensity
image (the intensity values are obtained from the RGB values using
luminosity). A grid edge xy connecting two grid points x, y is con-
sidered to cross the intensity edge if (1) the second-order derivatives
in the gradient directions have different signs at x and y, and (2)
the sum of the third-order derivatives in the gradient directions at x

and y is smaller than a threshold (we use −50 in our experiments).
If xy crosses the intensity edge, we estimate the crossing point on
xy (which we call intensity edge point) by linear interpolation of
the second-order derivatives at x and y [Lin98]. Two intensity edge
points on a grid square are then connected to form an intensity edge
segment. See Figure 3 for an illustration.

3.2. Computing 3D hermite samples

We next estimate a Hermite sample in 3D for each grid point on
the 2D grid structure mentioned above. The estimated positions and
normals play critical roles in both pruning non-geometric intensity
edges (Section 3.3) and computing the 3D location of feature points
(Section 3.4).

A natural way to estimate Hermite samples is to fit planes in
a neighbourhood of depth points. The key question is the choice
of neighbourhood. While a small neighbourhood is not enough to
filter out the noise in the depth points, a large neighbourhood may
“round off ” the positions and normals near a sharp feature. Our
solution is to use a smart neighbourhood that is delimited by the
extracted intensity edges. Since these 2D edges contain projections
of sharp geometric features and depth discontinuities, restricting
plane-fitting to one side of an intensity edge permits the use of
larger neighbourhood sizes without rounding off the sharp features.

This is similar in principle to bi-lateral filtering, except that we
use edges in the colour channel as barriers for filtering the depth
channel.

Specifically, for each 2D grid point x, we gather all depth points
whose corresponding pixels fall within a certain distance (we use
10 pixels) from x, and remove those whose straight-line connection
with x intersects with any intensity edge segment. We then estimate
a plane from the remaining depth points using PCA. Finally, we
obtain a Hermite sample {px, nx} where px is the intersection of
the plane and the view ray through x and nx is the plane normal
oriented towards the camera (i.e. the outward surface normal). We
assume that the camera is calibrated and the view ray can be directly
obtained from device-specific parameters.

We demonstrate the advantage of our smart neighbourhoods in
Figure 4 on three regions of the Cart example (second to fourth
rows). Compared with small (5 pixel radius) and large (10 pixel
radius) neighbourhoods that do not use intensity edges, smart neigh-
bourhoods result in less noisy Hermite samples that better respect
the sharp features and depth discontinuities. Our method can also
deal with small amounts of missing data (e.g. box A) and misalign-
ment between the colour and depth channels (e.g. box B).

Robust estimation of Hermite samples is important for the remain-
ing steps in our work flow. As shown in Figure 4 (last two rows),
Hermite samples estimated by our smart neighbourhood result in
more complete and coherent 2D intensity features after pruning and
cleaner 3D feature points in the end.

3.3. Pruning and classifying 2D intensity edges

An intensity edge may correspond to a sharp feature in two sce-
narios: either the surface on both sides of the feature is visible or
only one side of the surface is visible. In the first scenario, the depth
measurements are continuous across the intensity edge but the nor-
mals vary significantly. In the second scenario, the intensity edge
coincides with depth discontinuity, but it may also correspond to the
silhouette of a smooth surface. In the latter case, the normal on the
side of the intensity edge with smaller depth is nearly orthogonal to
the view direction.

Based on these observations, we use a multi-step check to de-
termine whether an intensity edge point r on a grid edge xy

(see Figure 3) corresponds to a sharp feature. Let px, nx and py, ny

be the Hermite samples for x and y, and u be the average of the
view directions at x and y. First, following [CTC13], we consider r

as on a depth discontinuity if the ratio ‖(px − py) · u‖/ max(‖px ·
u‖, ‖py · u‖) is greater than some constant ε1. Unlike absolute dif-
ference in depth values, this ratio tolerates more depth noise for
points further away from the camera, where the depth values are
less accurate. If r is on a depth discontinuity, and suppose py is
closer to the camera, we say r correspond to a sharp feature if
‖ny · u‖ is greater than some constant ε2. If r is not on a depth
discontinuity, it corresponds to a sharp feature if nx · ny is smaller
than some constant ε3. We set ε1 = 0.025, ε2 = 0.1, ε3 = 0.7 in our
experiments.

After pruning all intensity edge points that do not correspond
to sharp features, we can easily determine the feature types of the

c© 2016 The Authors
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Figure 4: Comparison of Hermite samples (2nd to 4th rows) es-
timated from a single RGB-D image of Cart (top row, showing
intensity edges in cyan) using small (a), large (b) and smart (c)
neighbourhoods, and comparison of the pruned intensity edges (5th
row) and 3D feature points (6th row) using the Hermite samples.
The Hermite samples are shown for three outlined boxes (A,B,C)
on the Cart, which contain missing depth information (box A) and
misalignment between colour and depth (box B; yellow lines in the
depth map indicate strong edges in the depth channel).

remaining points. Since valley lines cannot appear as contours, we
label all intensity edge points on depth discontinuities as ridge-
contour type. The remaining intensity edge points are classified into
ridge or valley by comparing the orientation of cross-product of the
normals associated with the Hermite samples and the orientation of
the 2D intensity edge segments.

Using robust Hermite samples, our method obtains 2D inten-
sity edges that more faithfully capture sharp features than methods
that rely on raw depth values, such as [SLG13]. The method of
[SLG13] combines depth discontinuity with those intensity edges
pruned by thresholding the variation of depths and depth gradients.
Figure 5 compares our result (a) with their results under two differ-
ent settings of their pruning thresholds (b and c). While the lower
thresholds leave behind many spurious edges, the higher thresh-

Figure 5: Comparing pruned 2D intensity edges produced by our
method (a) with the result of [SLG13] at two different threshold
settings (b and c). As [SLG13] works on IR images, we feed both
methods with the same IR image and depth map of the Bunny.

Figure 6: Notations in Equation (1).

olds remove some edges corresponding to sharp features. In con-
trast, our method produces cleaner edges that capture the major
sharp features, and we further compute 3D feature points (see next
section).

3.4. Computing 3D feature points

By now we have collected a rich set of constraints about sharp
features, both in 3D (Hermite samples, Figure 2b) and over the 2D
image plane (pruned and classified intensity edges, Figure 2c). In
this final step, we combine these constraints to compute the 3D
location of feature points.

We start by exploring local information, namely Hermite sam-
ples and intensity edge points within a single grid square, to com-
pute initial positions of the feature points. We then improve the
coherence of feature points along a feature curve using iterative
filtering. Both steps are solved by minimizing simple quadratic
functions that combine 2D and 3D constraints. Finally, we associate
each feature point with feature labels (e.g. ridge or valley) and sur-
face normals. These additional data will be utilized in the next stage
of our method for robust consolidation of multiple sets of feature
points.

Computing initial locations: Our objective function for computing
the feature locations is guided by two principles. On one hand, the
feature point should be close to the planes defined by the Hermite
samples. On the other hand, the projection of the feature point onto

c© 2016 The Authors
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Figure 7: Compare feature points computed with only 3D con-
straints (a) (minimizing Equation (1) with α = 0), with both 2D
and 3D constraints (b) (minimizing Equation (1) with α = 1.5) and
after iterative smoothing (c) (minimizing Equation (3)), shown in
the original view direction (left) and from a different angle (right).
Green and blue boxes, respectively, highlight areas of differences
between (a) and (b) and between (b) and (c). The last row compares
with the feature points produced by [CTC13], which only considered
the depth values.

the image plane should not stray too far from the intensity edges.
Consider a grid square (see Figure 3) that has one or more intensity
edge points of the same feature type on its edges. We seek a 3D
feature location q that minimizes the following quadratic energy:

α
∑
r∈R

(Mq − r)2 +
∑

{p,n}∈H

((q − p) · n)2. (1)

The first term measures the sum of 2D distances from the projection
of q (where M is the camera projection matrix) to the set R of all 2D
intensity edge points on the square, and the second term measures
the sum of 3D distances from q to the planes defined by the set H

of 3D Hermite samples for the four grid points of the square (see

Figure 8: Evaluating feature points on a synthetic example at three
different levels of noisiness, low (a), medium (b) and high (c). Top:
Input image and depth map. Second row: Initial feature points. Last
two rows: Updated feature points after three and six iterations of
filtering. The red curves indicate the actual intersections between
the cone and the cylinder.

Figure 6). If the intensity edge points on this square are of ridge-
contour type, H is restricted to those grid points that are on the
occluding side of the intensity edge segment. The balancing weight,
α, is set to 1.5 in our experiments.

The importance of using both 2D and 3D constraints is demon-
strated in Figures 7(a) and (b). Without the 2D term (i.e. setting
α = 0), the projection of the minimizer of Equation (1) can stray
far from the intensity edges in the view plane, and the resulting 3D
feature points easily fail to form clean lines (see green boxes in (a)).
This is largely due to the imperfect Hermite samples. Adding the
2D term pulls the features points closer to the visible feature in the
view plane, producing much more coherent lines in 3D (see green
boxes in (b)).

Iterative filtering: The initial locations of feature points are com-
puted using local Hermite and intensity information. While points
along the same feature curve have a coherent 2D projection (due to
the intensity edge constraints), their depth may not be smooth along
the curve (see Figure 7b, right).

A natural solution to create smoother feature curves would be
solving Equation (1) using Hermite samples in a large neighbour-
hood. However, if we treat all Hermite samples in the expanded
neighbourhood equally, the minimizing location could be adversely
affected by surface geometry far away from the sharp features. This

c© 2016 The Authors
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Figure 9: Work flow of merging feature point sets: (a) feature points obtained from 10 RGB-D images that are aligned using a standard
RGB-D registration method; (b) result after applying our feature-based rigid-body ICP alignment; (c–e) results after first, second and third
iterations of our feature consolidation algorithm. Feature points are coloured by type (red: ridge; blue: valley) and their normals are coloured
by directions.

Figure 10: A pair of feature points {f, g} in three different scenar-
ios. The shaded region indicates the interior of the surface. Note
that the point-to-feature distance between f and g are the same in
all three cases. However, only the pair in (a) has matching normal
directions and feature labels (ridge), which indicates that f and g

are likely to belong to the same feature.

may lead to distortion of the shape of features, particularly those on
curved surfaces.

To minimize feature distortion while improving fairness, our idea
is to weigh the contribution of each Hermite sample in the expanded
neighbourhood by how much it agrees with the initial feature loca-
tion. The agreement considers both the position p and the normal
n of a Hermite sample: it is higher if the initial feature location, q,
is closer to p and if q is closer to the plane defined by p and n.
Such weighting effectively adapts the neighbourhood of Hermite
samples to the planarity of the local geometry, because less samples
will contribute to the objective function for more curved surfaces.

Specifically, we use the Mahalanobis distance to evaluate the dis-
agreement between a point q and a Hermite sample {p, n} [LZT*08],

h(q, {p, n}) = ‖q − p + αh((q − p) · n)n‖, (2)

with αh = 2. We build an expanded set of Hermite samples H+

by tracing a fixed number (e.g. eight) of intensity edge segments

from the current grid square and collecting the Hermite samples
for the grid points in the traced squares. Given the initial feature
location q, we compute an updated feature location q ′ by minimizing
a modified quadratic energy involving weighted contributions of
Hermite samples,

α
∑
r∈R

(Mq ′ − r)2 +
∑

{p,n}∈H+
exp

(−h(q, {p, n})2

σh

)
((q ′ − p) · n)2. (3)

After updating the feature location, its agreement with the Hermite
samples changes, and this process can be iterated (i.e. setting q = q ′

and solving Equation (3) again). In our experiments, we found that
the process converges after just a few iterations, and hence we ran
three iterations for all our test data. We use σh = 0.00125L where L

is the largest dimension of the scene bounding box.

By considering both 2D and 3D constraints, our iterative filtering
diminishes the jaggedness of the initial feature points while keeping
their 2D projects close to the intensity edges (see Figure 7c). We
further evaluate the effect of iterative filtering on curved features
using a synthetic example in Figure 8. We take two intersecting
curved surfaces, a cylinder and a cone, and feed the algorithm with
a noise-free RGB image coupled with a noisy depth map (we tested
three levels of noisiness). Observe that iterative filtering maintains
the shape of the curve at low noise levels, and introduces only minor
distortion at high noise levels.

Feature labels and normals: As a final step, we label each 3D fea-
ture point as on a ridge, valley or ridge-contour based on the type of
the intensity edge points in the corresponding 2D grid square. Each
feature point is also associated with one or two normals, depending
on its label. A ridge or valley point has two normals, each being
the weighted average of the normals of the Hermite samples on one
side of the ridge or valley (using the same weights as in Equation
(3)). For a ridge-contour point, we only consider Hermite samples

c© 2016 The Authors
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Figure 11: (a–c): Consolidation results using WLOP [HLZ*09], L1

skeletonization [HWCO*13] and our method on the same feature
point cloud (Figure 9b). (d) Result of our consolidation method run
directly on the point cloud before feature-based ICP (Figure 9 a).

Figure 12: Consolidation results using different choices of σ2 (in
Equation (8)) and r (for defining the neighbourhood Sf in Equation
(9), as fraction of the largest dimension L of the scene bounding
box). See discussion in text and compare the result generated using
our default setting (σ2 = 0.0625, r = 0.05L) in Figure 9(e).

on the occluding side of the ridge, and hence only one normal is
obtained. To facilitate merging of multiple sets of feature points in
the next stage, we shall treat a ridge-contour point simply as a ridge
point equipped with a single normal. Examples of the feature points
and their normals are shown in Figure 2(d).

4. Merging Feature Points from Multiple RGB-D Images

Feature points extracted from a single RGB-D image rarely can
capture all sharp features in the scene. Also, noise in the image and
mismatch between colour and depth channels can introduce errors
in the locations, normals and labels of the feature points. Given
a sequence of RGB-D images capturing the object from different
angles, our goal is to produce a more complete set of feature points
while correcting the errors that appear in individual images. Note
that a dense RGB-D video is not required; we only need an image
set large enough such that each visible sharp feature appears as
intensity edges in multiple images.

We start by aligning depth maps in successive images using stan-
dard RGB-D registration algorithms. In our experiments, we use
an Iterative Closest Point Algorithm (ICP) based rigid-body align-
ment that utilizes both the colour (SIFT) and depth information
[HKH*10]. It is not surprising that applying the computed transfor-
mations to the feature points does not create a clean and complete
feature set (Figure 9a). The noise comes from both errors in the
transformations and, more importantly, errors in the feature point
locations extracted from each image.

To improve the quality of this initially aligned set of feature points,
we first apply the classical ICP alignment to the feature points alone
while utilizing the feature normals to define the distance metric.
This second alignment offers marginal improvement over initial
one, and the majority of noise remains (Figure 9b). In the next (and
the core) step, we perform an iterative, non-rigid consolidation of
feature points to clean and continuous lines (Figures 9c–e). A key
component of consolidation is a definition of feature affinity that
prevents merging of nearby features during consolidation.

The two steps (rigid-body ICP and non-rigid consolidation) are
explained below. We assume the input is a sequence of feature point
sets that have been aligned using any RGB-D registration methods.
Each feature point f is represented as a four-tuple {pf ,Nf , tf , uf }
that stores its position (pf ), normal set (Nf ), type (tf , either ridge
or valley) and view direction (uf ). For ridge points with a single
normal, the view direction serves as the surrogate for the ‘invisible’
normal on the other side of the ridge (see Section 4.2).

4.1. Feature-based ICP

We start by performing ICP alignment on the successive images
using only the feature points. Let F, F ′ be feature sets extracted
from two RGB-D images (after being transformed by the initial
alignment). For more robust results, we extend the point-to-plane
metric [SHT09] to form a point-to-feature metric that measures
the sum of distance from one feature point f ∈ F to both planes
associated with its nearest feature point f ′ ∈ F ′. Specifically, we
seek a rigid transformation T that minimizes the quadratic energy:
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Figure 13: Top row: pruned intensity edges (in inserts) and computed feature points from a single RGB-D image of Bunny (see Figure 2)
under different parameter settings (the left-most image uses the default setting). Bottom row: the consolidated points and final curve network
(in inserts) for each parameter setting from a collection of RGB-D images.

Figure 14: Feature extraction on two sculptures (top and bottom rows): (a) input RGB-D images; (b) feature points extracted from the first
image; (c) connected feature curves computed from all images; (d) feature points detected by [MOG09] on the registered depth maps; (e)
ridge and valleys extracted by [YBS05] on the reconstructed surfaces. For (d and e), we use [HKH*10] for registering depth maps, [HWG*13]
for filtering the registered point cloud and [OGG09] for surface reconstruction from the filtered point cloud.

∑
f ∈F

⎛
⎝ ∑

n∈Nf ′

(
((Tpf − pf ′ ) · n)2

) + β(Tpf − pf ′ )2

⎞
⎠ . (4)

The second term is designed to prevent drifting of points along the
feature (we use β = 0.5). For efficiency, we adopt a linear approxi-

mation of rigid transformations [lL04] so that the minimization can
be solved using standard linear least-squares.

4.2. Consolidating feature points

To handle the large amount of noise present after rigid-body align-
ment, we need to move individual feature points so that points along
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Figure 15: RGB-D images capturing a cabinet with books at vary-
ing distances (left), the feature points extracted from two images
(a and b), and the connected feature curves computed from all
images (c).

the same feature form thin and smooth lines. A key challenge to-
wards this goal is how to suppress the noise without merging nearby
features (e.g. the two parallel edges on the front of the cart as seen
in Figure 9b, top). To address this, we first present a definition of
feature affinity that can distinguish points lying on spatially close
but geometrically distinct features. We then utilize the affinity mea-
sure in an iterative algorithm that consolidates features points with
high affinity.

Feature affinity: Given a pair of features points, we wish
to assess the likelihood that they lie on the same feature. A
straight-forward definition would be based on the point-to-feature
distances as defined in the ICP alignment step; a high affinity is given
for pairs where each feature point lies close to the planes associated
with the other feature point. However, such definition would not be
able to distinguish features with different surface orientations. This
is illustrated in 2D in Figure 10, where we sample point pairs {f, g}
at sharp features in three different scenarios. Since the locations and
associated planes of {f, g} are the same in all three cases, the two
feature points would have the same affinity. However, except in the
first case, the two points clearly lie on different features. Note that
the two parallel edges in front of the cart in Figure 9(b) is similar to
the second scenario.

To disambiguate features with dissimilar surface orientations, we
consider both the normal directions and the ridge/valley label asso-
ciated with a feature point. Intuitively, the affinity between features
f, g should be high if all three criteria are met:

1. pf (resp. pg) lies close to both pg (resp. pf ) and the planes
defined by {pg, Ng} (resp. pf ,Nf ).

2. The normals Nf , Ng have similar orientations.
3. Both features have the same label, that is, tf = tg .

To see how these criteria work on the examples in Figure 10, note
that one of the normals in Nf is opposite to one in Ng in scenario
(b), which fails the second criteria, and labels tf , tg in (c) are ridge
and valley, respectively, which fails the third criteria.

More formally, we capture the first criteria by the distance
function:

d1(f, g) = 1

|Ng |
∑
n∈Ng

h(pf , {pg, n}) + 1

|Nf |
∑

n∈Nf

h(pg, {pf , n}), (5)

where | · | denotes cardinality and h is the Mahalanobis distance
defined in Equation (2).

To evaluate the second criteria, we define the augmented normal
set Vf for a feature point f as Nf if |Nf | = 2 and Nf ∪ {uf }
otherwise. In the latter case, we use the view direction uf as a
guesstimate of the invisible normal on the other side of the ridge.
Let Vf = {v1

f , v2
f }. There are two ways to match up the normal

sets associated with feature points f, g, and we take the smaller
matching difference among the two:

d2(f, g) = min
(
m

(
v1

f , v1
g

) + m
(
v2

f , v2
g

)
, m

(
v1

f , v2
g

) + m
(
v2

f , v1
g

))
. (6)

Here m measures the difference between two vectors,

m(n1, n2) =
⎧⎨
⎩

1 − n1 · n2, if n1 �= uf and n2 �= ug

0, else if n1 · n2 > 0
2, otherwise.

(7)

To combine these criteria together, we make the assumption that
the feature points are already roughly aligned, and hence proximity
(i.e. criteria 1) should dominate the overall affinity. As a result, we
defined the affinity between feature points f, g as

w(f, g) =
⎧⎨
⎩

exp

( −d1(f, g)2

exp(−d2(f, g)2/σ2)σ1

)
, if tf = tg

0, else.
(8)

Note that the orientation difference, d2, acts as a scalar weight
(greater than 1) of proximity, d1. We use σ1 = 0.01, σ2 = 0.0625 in
our experiments.

Iterative consolidation: Our algorithm iteratively pulls each feature
point towards the planes associated with neighbouring high-affinity
features points. Since both our affinity measure and the consolida-
tion objective (presented below) depend on the normals of a feature
point as well as its position, we adjust both positions and normals in
this process. In each iteration, we first update the positions of feature
points given their current normals, and then adjust the normals with
the positions fixed.

To update the position of a feature point f , we consider all feature
points Sf in a spherical neighbourhood centered at pf with radius
r . We set r = 0.05L where L is the largest dimension of the scene
bounding box. We seek a new location of pf , noted as p, that
minimizes the following quadratic energy:

∑
g∈Sf

⎛
⎝w(f, g)

∑
n∈Ng

((p − pg) · n)2

⎞
⎠ + γ

ρf

(p − pf )2. (9)

The first term favours locations close to the planes associated with
features points in Sf , while the second term prevents drifting.
Weighting the second term by the point density ρf locally around
f also has the effect of uniformly distributing points along the fea-
ture: a higher value of ρf would allow more drifting and hence
leads to lower density. Following previous works [HLZ*09], we
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Figure 16: Far-left: Selected frames from RGB-D video streams of synthetic (top and middle) and real (bottom) scenes. Mid-left: features
extracted using a mesh-based method [YBS05] on dense reconstruction [CZK15] from all frames in each video. Right: features produced by
our method on only a subset of frames in each video.

Figure 17: Abstract surfaces created from extracted sharp features.

define ρf = 1 + ∑
g∈Sf

exp(−‖pf − pg‖2/σρ). We use γ = 8 and
σρ = 0.15.

After updating the positions of all feature points, we replace
the normals at a feature point f by the affinity-weighted average of
normals at feature points in the neighbourhood Sf . For each g ∈ Sf ,
we consider one of the two matchings between augmented normal
sets Vf , Vg that realizes the smaller difference d2(f, g) (Equation
(6)). Each vector in Vg (if it is not the view direction ug) then
contributes to the average with weight w(f, g).

Example and comparison: As an example, Figures 9(c)–(e)
show the results of successive iterations of consolidation on the
rigidly aligned points in (b). In just three iterations, features points

form clearly distinguishable lines with little residue noise. Thanks
to our affinity measure, close-by features (e.g. the two edges in the
close-up view) are well separated.

We compare the results with two state-of-art point cloud con-
solidation methods, WLOP (weighted locally optimal projector)
[HLZ*09] and L1 skeletonization [HWCO*13], in Figures 11(a)
and (b). We ran both methods on the same point cloud (Figure 9b) as
our consolidation method. Observe that WLOP, designed for points
representing a surface, is not effective in contracting the points to
lines and the result still has a significant amount of noise. L1 skele-
tonization, designed for points forming tubular shapes, incorrectly
merges many nearby features.

Our consolidation is performed following the feature-based ICP
step. Even though feature-based ICP offers small improvements over
the initially aligned point clouds (e.g. Figure 9a), we have found that
such improvements can be critical to the success of consolidation.
Without feature-based ICP, the point cloud can become too cluttered,
and our consolidation method may either produce redundant line
features or fail to produce clean lines. An example is shown in
Figure 11(d).

Choice of parameters: We take a closer look at two key parameters
and justify our choice of their values by showing results under
alternative values (Figure 12).

We first consider σ2 in Equation (8), which determines the con-
tribution of normal mismatch (d2) to the overall affinity between
two feature points. Setting it too low makes the affinity sensitive
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to slight variation in normal directions, and hence feature points
obtained from different views representing the same feature may
not be merged (Figure 12a). On the other hand, setting σ2 too high
diminishes the role of normal matching in the affinity, and feature
points that lie on different features with disparate normal direc-
tions could be incorrectly merged (Figure 12b). Our default choice
(σ2 = 0.0625) trades off tolerance of normal variation with discrim-
ination of different features (see Figure 9e).

Next, we consider the radius r that defines the neighbourhood
Sf of features points when formulating the objective function in
Equation (9). A very small radius may prevent merging of fea-
ture points that belong to the same feature but do not locate in
close proximity (Figure 12c). On the other hand, a very large radius
could lead to broken features due to aggregation of feature points
(Figure 12d). Our choice (r = 0.05L) offers a balance between
maintaining the connectivity of feature curves and tolerating mis-
alignment of feature points.

5. Forming Lines

Given the consolidated feature points, we can form continuous poly-
lines that approximate the corresponding sharp feature. We adopt
the graph-based approach commonly used for connecting feature
points on point clouds [GWM01, PKG03].

We first construct a weighted graph by connecting a feature point
f to every feature point g in the neighbourhood Sf (as defined in
the previous section) with an edge whose weight equals the affinity
w(f, g) (Equation (8)). We then remove edges with weights below
a threshold (0.7 in our implementation). For each connected com-
ponent in the remainder of the graph, we reset each edge weight
to be its Euclidean length, and follow the method in [GWM01] to
compute a minimum spanning pattern (MSP) that contains cycles
with more edges than a user-specified constant. As suggested in
the paper, we set the constant to be

√
K/2, where K is the total

number of points. Finally, branches shorter than a given threshold
(10 in our implementation) are removed from the MSP. Result of
line extraction on the consolidated features in Figure 9(e) is shown
in Figure 1(c).

6. Experiment Results

We tested our method on a variety of synthetic inputs as well as
real data collected by Microsoft Kinect sensor. Each real data set
consists of 8 to 13 RGB-D images. Besides those already mentioned,
we show a few additional data ranging from individual objects to
complete scenes.

Parameters: All our experiments use the same set of parameter
values as discussed in the text. We evaluate in Figure 13 two param-
eters ε1, ε3 for pruning the intensity edges (Section 3.3) that could
strongly affect our results. While lower ε1 results in more ridge-
contour intensity edges (i.e. lying at depth discontinuity), higher ε3

results in more ridge or valley intensity edges. Despite the variation
in both feature points extracted from a single RGB-D image (see top
row) and the consolidated feature curves from multiple images (see
bottom row), the prominent sharp features of the object are captured
by our method in every parameter setting.

Single objects: We demonstrate our method on two complex sculp-
tures in Figure 14. As in Figure 1, observe that our method pro-
duces much more meaningful and contiguous sharp features than
geometry-based methods that work on the registered point clouds
or reconstructed surfaces.

Our method is robust to the change in distance between the camera
and the object. In the Cabinet example of Figure 15, the 10 input
RGB-D images (of which six are shown) are collected at distances
ranging from 0.5 m to 3 m away from the main object. Note that the
algorithm nicely consolidates feature points lying on fine features,
such as edges of the books, from both near and distant views. Also
notice that the 3D features points extracted from each image are not
affected by the texture of the books or the cabinet.

Scenes: Our method can be applied to extract sharp features
in an entire scene. We used two synthetic scene data sets in
[CZK15], which are RGB-D video streams capturing realisti-
cally rendered rooms, as well as benchmark data captured using
Kinect v2 [WMS16]. We ran our method on a selected subset of
frames in two videos and tried with different number of frames
(see Figure 16). Note that our method produces clean and coherent
feature curves using as few as five frames in each example, and
that increasing the number of input frames results in more complete
feature set. In contrast, even though a highly detailed surface can
be reconstructed from the video stream using dense reconstruction
[CZK15], extracting meaningful sharp features from such surfaces
using geometry-based methods (e.g. [YBS05]) is still challenging.

Performance: All computations were performed on a laptop PC
with 8G RAM. Computing feature points from a single RGB-D
image (at resolution 640 by 480) takes around 2 s. Merging features
from multiple images takes between 15 s (e.g. the Bunny) and
70 s (e.g. the Shell), with the majority of time spent on the non-
rigid consolidation step (feature-based ICP takes around 10 s in all
examples).

7. Conclusion and Discussion

We proposed a method for extracting sharp features (ridges and
valleys) directly from a set of RGB-D images without the need for
surface reconstruction. We start by extracting features from a single
image that harvest both intensity edges and depth values. Features
from multiple images are combined in a novel consolidation process
designed for points equipped with normals and ridge/valley labels.

Limitations: Our method is designed for sharp features that ap-
pear as strong edges in the colour channel. Hence it cannot robustly
detect rounded ridges or valleys. It will also fail under low-light
conditions where intensity edges become unreliable. While our
single-frame feature point extraction method can tolerate small
amount of data error, such as missing depth values, incorrect depth
values and misalignment between depth and colour channels, more
severe errors can cause our method to fail. Typical failures include
missing features (e.g. along the thin bevel of the Cart in Figure 4c),
incorrect labelling of features (e.g. ridges identified as valleys) and
incorrect feature locations (e.g. Figure 8c). These errors, as well as
errors in the initial RGB-D registration, can all lead to inaccurate
features after consolidation. In addition to improving the robustness
of our method, we would also like to explore the ability to recover
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sharp corners in addition to edges and, eventually, a complete feature
network.

Applications: Sharp features can be potentially useful in a variety
of tasks involving RGB-D scans, such as segmentation [CLW*14],
primitive detection [HM15] and object recognition [KBK15].

We are particularly interested in applying these sharp features
to model man-made objects directly from RGB-D images. Since
man-made shapes can be well described by a network of sharp
features together with the surface normals [MZL*09], our feature
extraction method is an ideal starting point for modelling. As a
proof-of-concept, we show in Figure 17 abstract surface models
of Cart and Bunny created by (1) interactively connecting the fea-
ture curves produced by our method into complete wireframes and
(2) surfacing the wireframes using the method of [ZZCJ13]. In the
future, we would like to explore more automated means for com-
pleting the wireframe from the sharp feature curves as well as better
surfacing algorithms that take into account the normals along the
sharp features and the depth points.
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