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a b s t r a c t

Sketch-based modeling has attracted considerable attention in recent years. In this paper, we propose a
semantic feature modeling system for sketch-based jewelry design, called blue Sketch2Jewelry. The
newly devised semantic feature class encodes specific domain knowledge (jewelry design knowledge in
this paper) and supplies prolific semantic information. The advantage of using semantic features is to
narrow down the searching space in sketch-based feature retrieval and benefits the parameter selection
from input sketches for feature instantiation and feature placement. Thus, the inaccuracy and ambiguity
problems of freehand sketch inputs are alleviated within Sketch2Jewelry, compared to previous
commercial feature-based modeling tools, e.g. SolidWorks, which are limited to fake sketches (i.e. not
real freehand inputs). Since semantic features are high-level building blocks, together with sketch inputs,
the proposed Sketch2Jewelry system can significantly improve the jewelry design efficiency. In addition,
Sketch2Jewelry allows non-experts to sketch a complex jewelry model naturally and efficiently with
design-by-feature. Examples are provided to demonstrate its usefulness.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many state-of-the-art computer aided design (CAD) systems,
e.g. SolidWorks, UG, Pro/E, CATIA, etc, are feature-centered sys-
tems, i.e. each model is designed-by-feature. They improve the
design efficiency by reusing parts stored in a database. However,
with the scale of database increasing, there are two major
problems: (1) it is difficult to find a required component from a
large database; (2) it costs much time to adjust its location and
orientation to match its neighbors.

The key observation in this work is that jewelry models can be
always decomposed into components, belonging to some basic types.
As shown in Fig. 1, the ring model is decomposed into six compo-
nents: a ring body, a jewel, and four prongs, of three types. In
addition, freehand sketching is a natural tool for modeling, by
mimicking the traditional pen-paper functions to make a design
process smooth and creative. In this paper, we propose a Sketch2Je-
welry system, where the modeling blocks are semantic features. A
semantic feature class is defined as a group of abstract data and rules
[1]. To support sketch inputs, the semantic feature representation is

extended in three aspects. Firstly, it contains at least one representa-
tive shape. Each shape is represented by Fourier descriptors and
shape parameters. Secondly, it has four oriented relations. An
oriented relation records the frequently used relationships between
feature categories, which defines a subspace of semantic feature
classes (detailed in Section 3.2). For example, JEWEL is usually
surrounded by PRONG (shown in Fig. 1) that can be described by
an oriented relation of the JEWEL class. Thirdly, it contains procedural
rules to compute shape parameters and to generate shapes in over-
determined or under-determined situations.

The streamline to handle an input sketch in Sketch2Jewelry is
shown in Fig. 2. Firstly, the searching space is derived from the
oriented relations of the sketch's spatial neighboring semantic
features. The top-ten similar semantic feature classes of the input
sketches are given in a candidate list. Then, the request semantic
feature class is selected and its number of key points is used to
guide the key point detection on the sketch. Subsequently, the
shape parameters are extracted based on the correspondence
between the key points of the selected semantic feature class
and the sketch. Finally, the selected semantic feature class is
instantiated and positioned in a location by minimizing the
alignment error with input sketches.

Compared to state-of-the-art feature-based CAD systems and
existing sketch-based modeling systems, Sketch2Jewelry supplies
a sketch interface for semantic feature modeling in a jewelry
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domain. The feature retrieval, instantiation, and placement with
sketches are done automatically, with the assistance of rich
semantic information. We show in this paper that Sketch2Jewelry
is an easy-to-use system, even for non-experts. For example, the
ring shown in Fig. 1 can be designed in Sketch2Jewelry using less
than 1 min. More examples are given in this paper to demonstrate
its efficiency.

2. Related work

Sketch2Jewelry mainly takes both advantages of feature-based
modeling and sketch-based modeling. Here, we review related
work in these two areas.

2.1. Feature-based modeling

A feature is an identifiable aspect of a product that is mappable
to a generic shape and functionally significant for some product
life-cycle phase [2]. A feature model is a data structure that
represents a part or an assembly in terms of its constituent
features. There are two basic approaches to create a feature model:
feature recognition and design-by-features. Both techniques have
a predefined feature library which encodes the specific domain
knowledge. They are complement with each other. In feature
recognition, features are recognized from a geometric model
which can convert the current huge geometric database into
feature models. Each feature can be efficiently reused in new
feature models. In design-by-features, a feature model is created
increasingly by instantiating predefined feature classes and posi-
tioning them in proper locations. In feature-based modeling
systems, features as high-level entities are used to enhance the
design efficiency in a specific application domain.

A semantic feature is semantic-oriented definition, unlike the
above feature definition which is still geometry-oriented. In
Bronsvoort's group [3], a semantic feature is defined as a declara-
tive class, where semantics and validity conditions are explicitly
specified. In Yuen's group [4–6], a semantic feature is defined as a
group of abstract data with attributes. Here, it is further extended
as a group of abstract data and rules. Abstract data consists of
shape data and semantic data, which can be trimmed for specific
application domain. Rules usually encode domain-depended
knowledge of a specific semantic feature.

2.2. Sketch-based modeling

A large body of literature had been published to supply
effective sketch-based modeling tools, which has been demon-
strated to be natural and efficient in the viewpoint of user
interaction [7]. Our presented work is motivated by the success
of two state-of-the-art sketch-based modeling methods [8] and
the feature-based modeling method [5]. The major concern of
sketch-based geometric modeling is how to interpret the input
sketches to obtain a 3D model. Lipson and Shpitalni [9] interpret
them as the projections of infinite 3D models and choose the best
one according to optimization rules. SmoothSketch [10] and Easy-
Toy [11] consider them as model's contours that are inflated into
3D round models. SilSketch [12] and FiberMesh [13] treat the
sketches as handles for local model deformation. KnitSketch [14]
mainly concerns the conceptual design process with a 2D pattern.
We refer the interested reader to the survey paper for a compre-
hensive discussion [15].

Sketch-based model retrieval: The input sketches are adopted as
indexes to retrieve similar parts/models from a large model
database. Such systems have similar components and only vary
in the process of how to match the 2D shape signatures with the
3D models. The Princeton search engine computes Fourier descrip-
tors based on centroid distances which are rotation and transla-
tion invariant [16]. The Purdue search engine [17] adopts Fourier
descriptor, Zernike moments, and 2.5D spherical harmonic
descriptors as classifiers to retrieve 3D models. The NTU search
engine [18] retrieves similar models based on light field descrip-
tors. Pu et al. [19] retrieves 3D CAD models using sketches. More
recently, Eitz et al. [20] and Liu et al. [21] investigate several local
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Fig. 1. A jewelry model is constructed by a ring body, a jewel, and four prongs, built
by one or two simple sketch inputs.
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Fig. 2. Overview of Sketch2Jewelry.
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descriptors, which allow users to refine the retrieved models
stroke-by-stroke2.

Part-in-whole modeling: Recently, this modeling methodology is
flourishing in sketch-based modeling [26] since it is in accordance
with designers' thinking process: an arbitrary complex model can
be constructed by assembling them with parts. Shin and Igarashi
[22] and Lee and Funkhouser [23] both interpreted sketches as
contours, used to retrieve parts which have similar contours in
certain view directions. Rivers et al. [24] represented a model by a
CSG tree of silhouette cylinders which are infinite extrusion of
contours in the viewing direction. Schmidt et al. [25] procedurally
defined a model with a BlobTree by sketch-based composition
operators. In all the above methods, the sketches still act as
guidance to position the retrieved parts into proper position of a
scene. We adopt a similar idea in Sketch2Jewelry. In addition, the
sketches in Sketch2Jewelry are further used to extract parameters
to instantiate a feature class. The most similar work is done by Yang
et al. [26], which instantiates parameterized objects by sketches,
too. Their difference is given in more detail in Section 5.2.

3. Semantic feature modeling for jewelry design

In this section, a general template class of all semantic feature
classes for jewelry design is given. Its key components are
detailed, including oriented relations, procedural rules, shape
descriptor and key point detection.

3.1. Semantic feature representation

A semantic feature is defined as a group of abstract data and
rules [1]. Its contents can be grouped into semantic data and shape
data, as shown in Fig. 3. Semantic data records engineering-related
information, such as name, nature, is_of, and oriented relations.

� Name is used to identify a semantic feature instance, i.e. an
entity instantiated from a specific semantic feature class.

� Nature is a feature property indicating whether it is ADDITIVE
or SUBTRACTIVE to a feature model. It is useful when features
are merged according to a CSG tree. The round jewel example
in Fig. 3(b) has ADDITIVE property.

� Is_of is a relation indicating the feature category where this
feature class belongs to.

� Oriented relations are subspaces of semantic feature classes
(detailed in Section 3.2).

Shape data describes the geometric shape of a representative
model in a semantic feature class. Parameters, together with
procedural rules (Section 3.3), specify how to construct the feature
shape. As the round jewel shown in Fig. 4, left, it is described by
four parameters: top_radius, mid_radius, height1, and total_height.
Key points and descriptors supply data for feature retrieval and
feature instantiation (detailed in Section 3.5).

The semantic data and shape data can be augmented or
trimmed for special application requirements.

3.2. Oriented relations

Oriented relation is a concept used to capture the patterns of
local relationships of jewelry components. For example, a jewel is
usually supported by prongs or seats. These kinds of relationships
are important jewelry design knowledge. Such knowledge is
helpful in resolving sketch ambiguity by narrowing down the
solution space. To explore these patterns, a jewelry database (over
430 jewelry products) from Jewellery CAD/CAM Ltd3 is analyzed
and we conclude that

(a) Most of the frequently used jewelry components can be
grouped into several categories, according to their
functionalities.

(b) The often used relationships among categories are stable.
For example, JEWEL follows with CUTTER in most cases.

(c) One category relates to more than one other categories
spatially.

The oriented relations of a semantic feature class represent these
patterns, as detailed below.

Feature categories in jewelry domain: A feature category is a
subspace containing semantic feature classes, which have the
same functions. Based on our current analysis, they are classified
into six categories.

� JEWEL is a type of precious stones, used for decoration.
� SEAT is a type of circular shapes to compound bezel structures

which are used to support JEWEL.
� PRONG is a type of elongated shapes to compound head

structures which are used to support JEWEL.
� RING is a type of torus-like shapes to fit a customer's finger.
� CUTTER is a kind of hole-shapes where jewels are positioned.
� GENERAL contains semantic feature classes for general usage, e.

g. sphere.

Each category contains many semantic feature classes with similar
functionalities, but their shape parameters are different. Some
exemplar models are given in the feature library shown in Fig. 2.
These feature categories are application-dependent.

Oriented relations of a semantic feature class: A sketch around a
semantic feature has different interpretation depending on their
relative spatial location. Thus, in our case, the surrounding of a
semantic feature is coarsely partitioned into four equal fan-areas,
as the jewel shown in Fig. 5. In each fan-area, the compatible
feature categories are listed. This is hard coded according to our
previous analysis of the jewelry database. To blur the boundary
between each fan-area, we also consider its two neighboring fan-
areas. Thus, if an input sketch located in the third area, the system
will infer that a PRONG feature or a RING feature may be inserted

Round_Jewel
ADDITIVE 
JEWEL 
RINGS/PRONGS 
top_radius/mid_radius 
total_height/height1  
IF…THEN 

Round JewelSemantic Feature  

 Semantic
Name 
Nature 
Is_of 
Oriented relations 

Shape  
Parameters 
Procedural rules  
Key points 
Descriptors 

Fig. 3. Template class of semantic features and a specific example.

2 A stroke is continuous movement of a pen. A sketch can contain more than
one stroke. 3 http://www.jewelcadpro.com
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according to the oriented relations listed in Fig. 5, right. In such a
way, the searching space is narrowed down.

3.3. Procedural rules

The procedural rules are a sequence of commands, taking the
key points of a sketch and its correspondence (computed in
Section 3.5) as input. The procedural rules of a semantic feature
will: (1) define the computation of shape parameters explicitly; (2)
check the validity of the input parameters; and (3) construct the
feature shape using the input parameters. The rules for the round
jewel shown in Fig. 4 are listed in Fig. 6 and are explained below.

� Line 1 to line 3 compute the shape parameters of the round
jewel, where Dist() is a function to compute the distance
between two key points.

� Line 4 to line 14 check the completeness and validity of the
shape parameters. Sketches usually supply insufficient infor-
mation for feature instantiation. However, the lost data usually
can be derived from the input sketches according to domain
knowledge to generate a reasonable shape.

� Line 15 imports the round jewel and resizes according to the
computed shape parameters.

The computation and validation of shape parameters are all
explicit expressions, to improve efficiency of the sketch-based
semantic feature modeling.

3.4. Shape descriptors

Shape descriptors are feature vectors of representative models
of a semantic feature class. They are used to support sketch-based
feature retrieval. Each representative model of a semantic feature
is first normalized and oriented as suggested by Liu et al. [21] and
rendered from three standard views (front/side/top). For example,
the vase model (shown in Fig. 7a), the three projection images are
shown in Fig. 7b. For each image, its contours are extracted using a
standard contour extraction algorithm of OpenCV. However, the

result may be noised, as shown in Fig. 8, left. To facilitate the
subsequent key point detection process, each point is filtered by
averaging within a filter-window [27] (the width of the filter-
window in Sketch2Jewelry is five-point width). The results are
satisfied, as shown in Fig. 8, right.

100 sample points are resampled on a filtered contour by equal
arc-length. Then, the Fourier descriptor based on centroid distance
[27] is adopted to encode the contour (10 Fourier coefficients is
used in our experiment).
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total
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A
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Point index

A B

C D

E

Fig. 4. Round jewel's key points and shape parameters (left), and the curvature profile of the front contour image (right).
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Fig. 5. Oriented relations around the round jewel.

Fig. 6. Procedural rules of the round jewel shown in Fig. 4.
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Fig. 7. Model projection configuration (f/s/t are the front/side/top views,
respectively).
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3.5. Key points detection

For a sampled contour C ¼ ðxðuÞ; yðuÞÞ, uA ½0;1�, the curvature at
parameter u is computed by:

κðuÞ ¼ _xðuÞ � €yðuÞ� _yðuÞ � €xðuÞ
ð _xðuÞ2þ _yðuÞ2Þ3=2

ð1Þ

where _x and €x are first and second derivatives, respectively. The
curvature profile ψ ðCÞ along the contour C is

ψ ðCÞ ¼ fκðuÞjuA ½0;1�g ð2Þ
One example of the curvature profiles of the round jewel is shown
in Fig. 4, right.

To find the key points of a contour, a set of candidate key points
are obtained from two sources. The first source is the most left,
right, bottom, and top points of the contour. The second source is
those points with maximum curvature locally, i.e. a local window
(twice width of that of the filter-window) on the curvature profile,
denoted as curvature-window. In a curvature-window, if the local
maximal curvature is twice as larger as the local mean curvature,
then it is considered as a candidate key point. Finally, the real key
points are obtained by a merging process. That is, if two candidate
key points are near each other in a given threshold, they will be
merged.

In Fig. 4, left, the front feature contour of the round jewel
feature has five key points. They are detected from its curvature
profile (Fig. 4, right). However, four of them (A, B, C, and D) are
overlapped with the most left/right/top/bottom points and are
therefore merged.

4. Sketch-based modeling with semantic features

In Sketch2Jewelry, sketches are used to retrieve user requested
semantic feature, to instantiate the selected semantic feature, and
to position the instantiated semantic feature. We show in this
section that the semantic feature retrieval and feature instantia-
tion can benefit from the proposed semantic feature representa-
tion in Section 3.

4.1. Feature retrieval with semantics

The computation process of shape descriptor introduced in
Section 3.4 is applied to input sketches, too. The computation
maps 100 sample points on a stroke to one point in another 10-
dimensional space (since 10 Fourier coefficients are adopted in
Section 3.4), denoted as a Fourier space, as the v0 shown in Fig. 9.
A feature representative model is approximated with three projec-
tion images. Each image contains at least one contour which is
presented by a Fourier point in the Fourier space. Thus, a feature
class, fi, is represented by a set of Fourier points, e.g. f i ¼ fvi1; vi2; vi3g,
as shown in Fig. 9. Thus, the most similar semantic feature to one

stroke is the one containing a Fourier point whose distance to v0 is
smallest.

Stroke-by-stroke retrieval: Stroke-by-stroke based feature retrie-
val means each input stroke has its own descriptors which are
used to filter the unwanted features. As the strokes increasing, the
matching results are gradually refined. To find the top-ten similar
features, each input stroke is smoothed, averaged, and trans-
formed into a Fourier point first (i.e. the Fourier point v0 shown
in Fig. 9). Then, for each feature, the L2 norm is computed between
its constituted points and v0. The minimum distance is accumu-
lated to this feature's dissimilarity value. Finally, the top-ten
features with a smaller dissimilarity value are selected from the
feature library. Fig. 10 shows an example of stroke-by-stroke
retrieval. In Fig. 10a, the first circular stroke cannot distinguish
the prong feature from the round jewel feature since they are both
circular viewed from the top. However, if sketching is continued,
the second stroke (Fig. 10b) will immediately distinguish the prong
feature from the round jewel, which ranked as top one.

In Sketch2Jewelry, the stroke sequence is not important. It
inherits all the benefits of sketch-based modeling. The users do
not need to care about the drawing order in the three standard
views. The user can refine the retrieval results stroke-by-stroke in
any order and any place.

Program 1. SearchSpace(pStroke).

Input: pStroke //input sketch

Output: F //list of feature categories

1. Find the nearest feature instance, nearF of

pStroke

2. Indexes of occupied fan-area of nearF

3. For each id of Indexes

4. Push its oriented relations to F

5. End

Computation of searching space: Using the oriented relations of
semantic feature classes, the searching space can be narrowed
down according to Program 1. In line 1, the nearest feature
instance is found by the centroid of the bounding box of existing
feature instances and the input stroke. In line 2, the indexes of the
occupied fan-areas may be greater than one since a stroke may
cross more than one fan area. For example, if the round jewel
shown in Fig. 5 is the nearest feature instance and the stroke is
located in the second and fourth fan-areas, then the oriented
relations RING/PRONG/GENERAL will be inserted to the feature
categories list F (line 3 to line 5).

Fig. 8. Compare the feature contours without (left) and with (right) smoothing.

f1

f2 f3

v1
v2

v0

Fig. 9. Similarity metric computed as minimum point distance in a Fourier space
(red dots are Fourier points; fi is the ith feature; v0 is the Fourier point of the input
stroke). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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All the feature categories in list F define the size of the
searching space. At the very beginning, F is initialized to contain
all feature categories in a jewelry domain. It is updated according
to Program 1 after each stroke. Thus, at any time, the size of the
searching space can be computed by

jSj ¼ ∑
iA jFj

jFij ð3Þ

where jFj is a number of feature categories in the list F, jFij is
the number of semantic feature classes in the subspace of Fi and jSj is
the total number of semantic feature classes in the searching space.

4.2. Feature instantiation with semantics

To instantiate a selected semantic feature class, the shape
parameters are extracted from input sketches by detecting key
points on sketches and by finding their correspondence, with the
help from the rich semantics of the selected semantic feature class.

Key points detection on sketches with semantics: The key points
detection technique given in Section 3.5 is not satisfied since
freehand sketches are noisy. The popular Douglas–Peucker algo-
rithm [28] and its variation [29] can also identify key points, but its
number of key points depends on a given threshold. However, in
our case, the number of key points can be obtained in advance
from the selected semantic feature class. Thus, our task is to
choose a given number of key points from an input sketch, as
shown in Program 2.

Program 2. KeyPointFromSketch(N, pStroke).

Input: N //given number of key points

pStroke //input stroke

Output: keys //list of N key points

1. For each point of stroke

2. Compute curvature, stored in curvlist.

3. End

4. For each point in curvlist

5. winWidth¼1 at ci

6. do {
7. IF curvlist[ci] is maximum THEN

8. winWidth¼winWidthþ1

9. ELSE

10. Add winWidth to widthlist

11. Break

12. END

13. }while{winWidth ohalf of curvlist

14. End

15. Sort the widthlist in decrease order

16. Choose the former N elements

From line 1 to line 3, the curvature of each point is computed.
Line 4 to line 14 computes the maximum window width of each
point, in which this point's curvature is maximal. In line 15 and
line 16, the list of maximum window width is sorted and the
former N points are selected as key points. This algorithm can
guarantee the same number of key points on the input stroke
which is obtained. It will make easier to find the correspondence.

Key point correspondence via cross-correlation: The correspon-
dences of two curvature profile, e.g. ψ1 and ψ2, are obtained by
minimizing the cross correlation energy [30]. That is,

min
vA ½0;1�

Eðψ1;ψ2; vÞ and

Eðψ1;ψ2; vÞ ¼
∑uA ½0;1�ðκ1ðuÞ�κ1 Þðκ2ðuþvÞ�κ2 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑uA ½0;1�ðκ1ðuÞ�κ1 Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑uA ½0;1�ðκ2ðuÞ�κ2 Þ2
q ð4Þ

where the κ1ðuÞ and κ1 are the curvature at u and the average
curvature of ψ1, similar to κ2ðuÞ and κ2 ; v is the phase shift
between two curvature profiles. The optimal solution can be found
with a standard golden section search method.

The higher the correlation energy E is, the higher the similarity
between the two shapes is. One example is shown in Fig. 11, in
which curvature profiles ψ1 and ψ2 are the input sketch contour
and front feature contour of the selected block feature class,
respectively. The maximum cross correlation energy value is
0.64, obtained at v¼0.02. This means the start point of the sketch
contour corresponds to the third point of the front feature contour
of the block feature.

Parameter computation with semantics: The parameters are
computed based on the key points and their correspondence of
input sketches. For example, the top_radius of the round jewel
(Fig. 4, left) is computed as the horizontal-coordinate difference
between key points A and E; the total_height is the average

Fig. 10. Feature retrieval stroke-by-stroke.
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vertical-coordinate difference between key points A and C. These
are hard-coded by the procedural rules of a specific semantic
feature (refer to Section 3.3). However, the over-determined and
under-determined problems need to be resolved.

The over-determined problem is due to the inconsistence of
sketches given in different views, for example, the key points A
and E (defined in Fig. 4, left) of the round jewel in two input
sketches in top and front views (Fig. 10). A simple but effective
solution to the over-determined problem is to designate a primary
view among the three standard views. Here, the primary view is
selected as the view containing the maximum number of key
points. If two views have the same number of key points, view is
chosen by a priority: front, side, and top. For example, the primary
view of the round feature class is the front view (Fig. 4). Mean-
while, the extracted parameters from primary view also have
priority to other views. Thus, the value of the mid_radius is
extracted from the second stroke in Fig. 10b, not the first stroke
in Fig. 10a.

The under-determined problem often occurs since users may
select a semantic feature class from the candidate list at any time.
This is resolved by the procedural rules, as shown in Fig. 6.

4.3. Feature placement

When a selected semantic feature class is instantiated, the
objective of the feature placement is to minimize the errors
between their corresponding key points. As shown in Fig. 12, the
key points on the image contour (Fig. 12b) should be mapped to
the key points on the rotated input sketch (Fig. 12a). Since the
selected semantic feature is instantiated with the parameters
computed from the key points of the input sketch contour, the
feature placement is actually simplified to a rigid transformation,
i.e. translation and rotation.

Feature placement with rigid transformation is more stable
than previous methods. For example, the one given in [31], which
computes an affine matrix to deform the template model into the
sketched contours, is error-prone since the sketches are noisy.
Instead, sketches are imprecise in essence and only a coarse shape
is described, it is not necessary to fit a template model to the
sketch contour completely. Alternatively, it is reasonable to infer a
set of parameters from the sketches to generate a beatified feature.

5. Results and discussion

The Sketch2Jewelry has been implemented as a prototype
system. All the operations shown in the accompanying demo
video are run interactively on a desktop PC running Window
7 operating system with Intel Core i5 CPU750 2.67 GHz and
3GB RAM.

An overview of the Sketch2Jewelry system is given in Fig. 2. It
consists of two parts: off-line part and on-line part. For the off-line
part, the main task is to construct a feature library of semantic
features using the methods given in Section 3. For the on-line part,
the system pre-processes the input sketches, retrieves similar
features, extracts parameters and instantiates the selected feature
class (detailed in Section 4). All these steps are performed
interactively.

To demonstrate the main features of Sketch2Jewelry, our
current feature library contains about 80 features from the jewelry
industry. For example, to design the ring model shown in Fig. 1,
one step is shown in Fig. 13. The user can choose to work under a
workspace with multiple sub-windows or just one. If accustomed
to work with a window at a time, the users can switch among the
four standard views (front/side/top/3D) by using hot keys. When
sketching in one view, the projections in other views are also
shown interactively as a position reference, as shown in the front
view of Fig. 13. Though the positions of the first stroke and second
stroke have no overlap, the round jewel class can be successfully
instantiated and positioned near the center of the four prongs
using the primary view rule (Section 4.2).

Fig. 14 shows a complex ring model designed in Sketch2Je-
welry. All the components before Boolean operations of the
designed ring model are also shown in Fig. 14. Though it seems
much more complex than the ring model shown in Fig. 1, it
contains only six feature types. For example, the slot feature is
bent and subtracted from the ring body feature. The nature of the
cutter feature is always SUBTRACTIVE which cuts a hole to position
the round jewels.

Fig. 15 shows an earring model, containing four hearts, three
seats, three cutters, three jewels and two general features. These
fifteen features belong to five feature categories. They can be easily
designed in Sketch2Jewelry.

5.1. Comparison with feature-based modeling

When the same models (e.g. Figs. 1 and 14) are created in
SolidWorks (the same parts are prestored in its part library), the
time cost varies a lot for different users, depending on their
familiarity of SolidWorks. However, in Sketch2Jewelry, all time
costs are almost the same, independent of users’ knowledge of our
system.

This difference is mainly because of the different modeling
sequences in SolidWorks and Sketch2Jewelry. In SolidWorks, there
are usually three steps to instantiate a feature from library: finding
a feature from library, configuring the feature's shape parameters,
and adjusting the feature instance's location and orientation. Thus,
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Fig. 11. Cross correlation energy between two curvature profiles.
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Fig. 12. The correspondences of key points between (a) a sketched contour and
(b) the feature contour of a round jewel feature class.
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the total time creating a feature model is

T1 ¼ n � ðtf þtcþtaÞ ð5Þ

where n is the number of features in the model; t_f ; t_c, and t_a
are the time cost of the above three steps, respectively. However,
in Sketch2Jewelry, the total time cost in constructing a feature

model is

T2 ¼ n � ts ð6Þ
where ts is the time cost of sketching up to three silhouette
contours of each feature component.

From Eqs. (5) and (6), we know the time cost of both Solid-
Works and Sketch2Jewelry is proportional to the number of
features. However, in Eq. (5), the more familiar with the Solid-
Works the users are, the smaller the t_f ; t_c, and t_a are. In Eq. (6),

Front view

Top view 3D view

Right view

Candidate list

First stroke

Second

stroke

Projection

Fig. 13. Sketch the round jewel feature in Sketch2Jewelry.
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Jewel Slot
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Fig. 14. A complex ring model designed in Sketch2Jewelry.

Heart Seat Jewel Cutter General

Fig. 15. A earring model designed in Sketch2Jewelry.
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the ts is almost constant since our sketching mimics the traditional
pen-and-paper input.

From a preliminary test using the models in Figs. 1 and 14, we
found the time cost of Sketch2Jewelry is twice in average as fast as
that of SolidWorks.

5.2. Comparison with sketch-based modeling

One close related work to Sketch2Jewelry is the sketch-
based modeling of parameterized objects [26]. However, in
Sketch2Jewelry:

� The way encoding model knowledge is more flexible. In [26], a
specific object is described by a template which contains a
parent node and a set of child nodes. Nodes are parameterized
and their relative locations are hard-coded in the template. In
Sketch2Jewelry, the common building blocks are encoded into
the feature library. Then, a complex model is created in a
design-by-feature way. It makes the design activities more
creative.

� The efficiency problem mentioned in [26] is handled well.
Firstly, the graph matching algorithm in [26] is replaced with a
visual-based retrieval strategy and accelerated with semantics.
Secondly, the searching space is narrowed down by semantics
in Sketch2Jewelry. That is, the searching efficiency will not be
reduced when the feature library scale increases.

6. Conclusion and feature work

Several contributions have been made within Sketch2Jewelry.
First, it is a feature-centered modeling system with freehand
sketch inputs, allowing users to create a model feature-by-
feature. No specialized knowledge and artistic sketching skills
are required. This system is easy-to-learn and easy-to-use. Second,
semantic feature classes are augmented with oriented relations,
procedural rules, and shape descriptors to support sketches. Third,
the rich semantics are applied to semantic feature retrieval and
instantiation.

In practice, some limitations need to be noted. First, we require
all semantic feature classes are simple. This is because the
ambiguity from sketches increases when they are complex. How-
ever, this requirement is acceptable in modeling since the finer
granularity it is, the more flexibility we have. Second, coding the
semantic feature classes in a specific domain is a tedious job, but
only once is needed and can be reused. In the future, some sketch-
based tools will be designed to easy this process. Third, the
placement of an instantiated feature is not accurate. Thus, current
implementation of Sketch2Jewelry is useful in illustrating design
ideas. Further constraints need to be inserted and satisfied (just as
SolidWorks) for accurate assembly purpose.

In addition, we intend to add more feature classes from
different application domains into the feature library to verify
the performance of our sketch-based system and a more compre-
hensive user study will be conducted.
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