
Computer Graphics

Shi-Min Hu

Tsinghua University

Ray Tracing Acceleration(光线跟踪加速)

• Ray Tracing

– As we mentioned in previous course, ray tracing

is one of the most important techniques in

computer graphics. Using ray tracing techniques,

we could generate impressive images including a

lot of visual effects, such as hard/soft shadows,

transparence(透明), translucence(半透明),

reflection, refraction, texture and so on.

Recursive Ray Tracing

Recursive Ray Tracing

IntersectColor(vBeginPoint, vDirection)

{

Determine IntersectPoint;

Color = ambient color;

for each light

Color += local shading term;

if(surface is reflective)

color += reflect Coefficient *

IntersectColor(IntersecPoint, Reflect Ray);

else if (surface is refractive)

color += refract Coefficient *

IntersectColor(IntersecPoint, Refract Ray);

return color;

}

• Effects of ray tracing

Ray Tracing Acceleration

• Motivation (Limitation of ray tracing)

– The common property of all ray tracing

techniques is their high time and space

complexity.（时空复杂性高）

– They spend much time repeatedly for visibility

computations, or doing ray object intersection

testing（主要时间用于可见性计算和求交测试）

Ray Tracing Acceleration

• How to accelerate?

– We will look at spatial(空间的) data structures

• Hierarchical (层次性) Bounding Volumes (包围盒)

• Uniform Grids (均匀格点)

• Quadtree/Octree (四叉树/八叉树)

• K-d tree / BSP tree (空间二分树)

– Good spatial data structures could speed up ray

tracing by 10-100 times

Ray Intersection

– Given a model, and a ray direction, as shown in

the right figure, how to test whether the ray

intersect with the model,

and how to compute where

the intersection point

is?

Ray Intersection

• Brute Force method

– However, this brute force method is costly,

needs O(n) time complexity, n is the

number of triangles

boolean IsIntersect(Ray r, Model m)

For each triangle t in m

if IsIntersect(t,r)

return true

End For

return false

Bounding Volumes(包围盒)

• Wrap(包住) things that are hard to test for

intersection in things that are easy to test

– Example: wrap a complicated triangle mesh in a box

– Ray can’t hit the real object unless it hits the box

– Adds some overhead, but generally pays for itself

• Most common bounding volume types:

– bounding box(包围盒) and bounding sphere（包围球）

– bounding box could be axis-aligned(和坐标轴平行) or

not

Bounding Volumes(包围盒)

• Bounding Volume Examples

– Before test ray/object

intersect, First test the

ray for an intersection

with the bounding volume:

• If the ray does not intersect

with the bounding volume,

the ray would not intersect with the object.

(Easy reject)

• If intersected, further test ray/object

intersection

Axis-Aligned Bounding Box

Creation

• Axis-Aligned bounding box(AABB)

– the box is parallel to the x,y,z axis

of the world coordinate system

• Creation

– For each axis direction (x,y,z), calculate x_min, x_max,

(y_min,y_max;z_min,z_max) of the object

– The box (x_min,x_max,y_min,y_max,z_min, z_max) is

the resulting axis-aligned bounding box

Non-Axis-Aligned Bounding Box

• Non-Axis-Aligned bounding box

– Also called oriented bounding box (OBB)

– an OBB is more optimal than an AABB.

OBB “matches” more than AABB.

– an optimal OBB is an approximation of the minimal

bounding box, usually obtained by a complex

optimization process.

• How to construct an OBB ?

OBB box.ppt

Bounding Sphere

• bounding sphere

– A bounding sphere only has two

parameters: radius and center. When object

rotates, bounding sphere does not need to rotate.

– However, the ideal minimal-radius bounding sphere is

hard to calculate.

– Here, we introduce a method for finding a near optimal

bounding sphere for a set of n points in 3D space. It is

rather fast, O(n) time complexity. The generated sphere

is about 5% larger than the ideal bounding sphere.

Bounding Sphere

• This algorithm is executed by 2 steps:

– First step: Make one (quick) pass through the N points.

Find these six points:

• The point with minimum x, the point with maximum x,

The point with minimum y, the point with maximum y,

The point with minimum z, the point with maximum z.

This gives three pairs of points. Each pair has the

maximum span for its dimension. Pick the pair with the

maximum point-to-point separation. Calculate the initial

sphere, using this pair of points as a diameter.

Bounding Sphere

– Make a second pass through the N points: for each

point outside the current sphere, update the current

sphere to the larger sphere passing through the point on

one side, and the back side of the old sphere on the other

side. Each new sphere will (barely) contain the old

sphere, and the new point. As shown in the figure, old

sphere (the red sphere)

is enlarged to the new sphere (The

green sphere).

C

P

Bounding Volumes(包围盒)

• Bounding Volumes

– Besides acceleration for

ray tracing. Bounding

volumes could be used for

other motivations, such as

Hidden Surface Removal,

Collision(碰撞) Detection

Bounding Volumes(包围盒)

• Ray Intersection with Bounding Volumes

– Including Ray/Box intersection and Ray/Sphere

Intersection. Both have been discussed in chapter 4 “Ray

Tracing”.

Ro

Pc

Rd

d

tP

r
min

0t

min

1t

max

0t

max

1t

min

0t

min

1t

max

0t

max

1t

Hierarchical Bounding Volume

• Hierarchical Bounding Volume (HBV:层次包围盒)

– Limitation of bounding volume

• Still need to test ray against every object, O(n) time

complexity, where n is the number of objects.

– A natural extension to bounding volumes is a

hierarchical bounding volume (HBV).

– Given the bounding volumes of the objects in the

scene, a tree data structure of bounding volumes is

created with the bounding volumes of the objects at

the leaves.

– Each interior node v of HBV corresponds to the

bounding volumes that completely encloses the

bounding volumes of all the children nodes of v.

Hierarchical Bounding Volume

• Hierarchical Bounding Volume (HBV)

– The method for testing a ray with the objects in the

scene using HBV:

• First test whether the ray intersect with the bounding

volume at the root node. If not intersected, the ray

cannot intersect any object.

• Otherwise, recursively test the hierarchy for those

nodes of HBV whose bounding volumes are

intersected by the ray.

– An interesting property of HBV is: although a

bounding volume of a node always completely

includes its children bounding volumes, these

children bounding volumes could probably

intersect with each other.

Hierarchical Bounding Volume

• An example

– Several triangles (right figure)

– Hierarchical bounding box

(figure below)

Hierarchical Bounding Volume

• An example

Hierarchical Bounding Volume

• An example

Hierarchical Bounding Volume

• Hierarchical Bounding Volume (HBV)

– Works well if you use good (appropriate) bounding

volume and hierarchy

– Should give O(logn) time complexity rather than

O(n) complexity (n = number of objects)

– Can have multiple classes (box, sphere) of bounding

volumes and pick the best appropriate one for each

enclosed object（混用不同的包围盒）

Uniform Grids(均匀格点)

• Data Structure: a 3D array of cells that tile space

– Each cell lists all primitives which intersect with

that cell（每一个格点有所含面片的索引）

Uniform Grids(均匀格点)

• Intersection testing:

– Start tracing at cell where ray begins

– Step from cell to cell, searching for the first intersection

cell

– At each cell, test for intersection with all primitives

intersected with that cell

– If there is an intersection, return the closest one

Uniform Grids(均匀格点)

• How to traverse the cells?

• in 2D: the

horizontal

and vertical

crossing have

regular

patterns.

dtx = gridx / dirx

dty = gridy / diry

gridx

gridy

dirx

diry

What is the next cell?

dtx
dty

Cell (i, j)
if (tnext_x < tnext_y)

i += signx

tmin = tnext_x

tnext_x += dtx

else

j += signy

tmin = tnext_y

tnext_y += dty

tmin

tnext_x

tnext_y

Cell (i+1, j)

(dirx, diry)

if (dirx > 0) signx = 1 else signx = -1

if (diry > 0) signy = 1 else signy = -1

What is the next cell?

• In 3D, it is similar

– suppose current

cell is (i,j,k)

if (dirx > 0) signx = 1 else signx = -1

if (diry > 0) signy = 1 else signy = -1

if (dirz > 0) signz = 1 else signz = -1

if (tnext_x < tnext_y and tnext_x < tnext_z)

i += signx; tmin = tnext_x; tnext_x += dtx;

else if (tnext_y < tnext_x and tnext_y < tnext_z)

j += signy; tmin = tnext_y; tnext_y += dty;

else // tnext_z is minimum

k += signz; tmin = tnext_z; tnext_z += dtz;

What is the next cell?

• 3DDDA – Three

Dimensional Digital

Difference Analyzer

• Similar to Line

Rasterization

Ray Marching Visualization

primitive density

sphere voxelization

entered faces

cells traversed

Uniform Grids(均匀格点)

• Advantages

– easy to construct and easy to traverse

• Disadvantages

– Uniform grids are a poor choice if the world is non-

homogeneous(不均匀). Many polygons will cluster in a

small space

– How many cells to use?

• too few  many objects in a cell  slow

• too many  many empty cells to traverse  slow and large

storage

– Non-uniform spatial division is better!

Octree (八叉树)

• QuadTree (四叉树)

– The 2D generalization of

binary tree (二叉树)

– node is a square

– recursively split a square into four equal sub-squares

– stop when leaves get “simple enough”

• Octree

– 3D generalization of quadtree

– node is a cube, recursively split into 8 equal sub-cubes

– Octree is more expensive to traverse than uniform grids,

but octree adapts better to non-homogeneous scenes

Octree (八叉树)

• Construction of Octree

– First, enclose the entire scene in a minimal axis-

aligned box.

– Built recursively in a top-down fashion, and stops

recursion when a stopping criterion is fulfilled.

– These criteria can include: a maximum number of

recursion level has been reached, or that there is

fewer than a threshold number of primitives in a

node.（终止递归条件：已达最大层次、或包围盒内物体已很少）

Octree (八叉树)

• Construction of Octree

– If the recursion is stopped, the algorithm binds the

primitives to the node and terminates the recursion.

– Otherwise (does not reach the depth threshold and the

number of primitives bind to the node is larger than

the threshold), it subdivides the node along its main

three axes using three planes, thereby forming eight

equal-sized sub-nodes. Each sub-node is tested and

possibly subdivided again into 2*2*2 smaller ones.

Octree (八叉树)

• Construction of Octree

– Note that, primitives are always stored in leaf nodes;

and therefore, certain primitives have to be stored in

more than one leaf node (for example, a primitive

which happens to locate at the center of the octree)

– But this is not efficient, since a tiny object may be

stored in many nodes. One solution is to split the

primitives, but that inroduces more primitives.

• A variant of octree called octree-R to solve this

problem

Octree (八叉树)

• Octree-R

– Octree-R results in arbitrary positioning of the splitting

planes inside the interior nodes. The difference between

the octree and octree-R is: the splitting planes of octree

are always in the center, while octree-R not.

– Using smart heuristic algorithm for positioning the

splitting planes inside the octree interior node for all

three axes.

– Octree-R could speed-up octree by 4% - 47%, depending

on the distribution of the objects in the scene.

Octree (八叉树)

• addressing of child nodes in octree

– There are two methods for accessing the interior octree

node

• Direct pointing

the interior node contains eight pointers to its descendants

• The address of the child nodes is usually formed by

postfixing or prefixing the parent address by digits from 1

to 8, as in the figure below

Octree (八叉树)

• Traversal in octree

– Ray traversal algorithm for octree is more complicated

than uniform grid, and BSP tree (we will introduce it

later). Each ray intersecting an octree node can visit at

most its four of eight descendants, and the computation

of their order to be visited along the ray path is more

involved than for BSP tree.

– the ray traversal algorithm，could

refer to a survey about it .
V. Havran. A summary of octree ray traversal algorithms. Ray Tracing News, Dec. 1999.

Available from http://www.acm.org/tog/resources/RTNews/html/rtnv12n2.html

octree.ppt
octree.ppt
octree.ppt
octree.ppt

BSP (Binary Space Partition)

tree

• BSP (Binary Space Partitioning) Tree

– BSP tree is a spatial subdivision that can be used to

solve a variety of geometrical problems. It was

initially developed as a means of solving the hidden

surface problem in computer graphics.

– It is a higher dimensional analogy to the binary

search tree.

– BSP tree has two major types, axis-aligned and

polygon-aligned.

BSP (Binary Space Partition)

tree

• Polygon-aligned BSP tree

– Choose a plane underlying the polygon as the

splitting entity that subdivides the spatial region into

two parts. (So the splitting plane could be in

arbitrary position)

– The scene is typically required to contain only

polygons, which is too restrictive for ray tracing

applications.

– So we do not discuss this form of BSP tree in class.

BSP (Binary Space Partition)

tree

• Axis-aligned BSP tree

– The splitting plane is always perpendicular to one of

the coordinate axes. And the splitting plane always

lies at the mid-point of the current node resulting in

two children nodes with equal size (However, in some

other literature, the axis-aligned form of BSP tree can

have arbitrary positioning of the splitting planes)

– The orthogonality of splitting planes significantly

simplifies the intersection test between a ray and

the splitting plane. The cost of computation in

intersection between a ray and the axis-aligned

splitting plane is about 3 times lower than for an

arbitrary positioned plane.

BSP (Binary Space Partition)

tree

• An example of axis-aligned BSP tree

BSP (Binary Space Partition)

tree

• Construction of axis-aligned BSP tree

– Similar to octree, BSP tree is constructed hierarchically in

top-down fashion.

• A splitting plane (perpendicular to axis x or y or z) is

selected to subdivide a current leaf node into two equal-size

sub-nodes. Then the leaf becomes an interior node, with two

new descendant leaves.

• The process is repeated recursively until certain termination

criteria are reached.

• Similar to octree, commonly used termination criteria are

the maximum leaf depth and the number of primitives

associated with the leaf.

BSP (Binary Space Partition)

tree

Pseudo-code for

constructing a

BSP-tree

BSP (Binary Space Partition)

tree

• Construction of axis-aligned BSP tree

– As shown in the pseudo-code in last page,

traditionally, the splitting plane is positioned at the

mid-point of the chosen axis, and the order of axes

(x,y,z) is regularly changed on successive levels of

the hierarchy (for example, first x, next y, next z,

next x, …). This makes the hierarchical structure

more regular.

BSP (Binary Space Partition)

tree

• Some examples

BSP (Binary Space Partition)

tree

• Some examples

BSP (Binary Space Partition)

tree

• Difference between kd-tree and BSP tree

– Distinguished by the positioning of the splitting plane.

Conceptually, BSP tree and kd-tree are equivalent. The

only difference is: in BSP-tree, the splitting plane always

lies at the mid-point of the current node, resulting in two

children nodes with equal size; the kd-tree can have

arbitrarily positioning of the splitting planes.

– Thus, any BSP tree is a kd-tree, but not vice versa.

BSP (Binary Space Partition)

tree

• Ray traversal in BSP tree

BSP (Binary Space Partition)

tree

• Ray traversal in BSP tree

– In the pseudo-code given in the last page, recursion is

used. Recursion could be avoided by maintaining an

explicit stack.

– When calling the function RayTreeIntersect() the first

time, initial values of min and max should be distances

(measured from the ray origin along the ray direction) to

the two intersecting points between the ray and the

bounding volume of the root of the BSP tree. Notice that

if a ray originates from inside the BSP tree, then the

intial value of min would be negative.

BSP (Binary Space Partition)

tree

• Ray traversal in BSP tree

– Generally, ray traversal in BSP tree is 10% faster than

using octree.

– Because BSP tree always split at mid-points, if an object

spans multiple tree nodes, then the intersection

calculation between this object and a given ray may need

to be carried out many times, once in each node

traversed by the ray.

Similar to using Octree-R instead of octree, kd-tree could

be used to solve this problem.

Other techniques

• Distributed Ray tracing（分布式光线跟踪）

– also called stochastic ray tracing, is a refinement of ray

tracing that allows for the rendering of "soft" phenomena.

– Conventional ray tracing uses single rays to sample many

different domains. For example, when the color of an

object is calculated, ray tracing might send a single ray to

each light source in the scene. This leads to sharp shadows.

Conventional ray tracing also typically generate one

reflection ray and one transmission ray per intersection. As

a result, reflected and transmitted images are perfectly

(and unrealistically) sharp.

Distributed Ray Tracing

• Distributed Ray tracing

– It generates various kinds of effects:

• Illumination: extended light sources, soft

shadows;

• Pixel: anti-aliasing;

• Lens: depth-of-field;

• BRDF: glossy-reflection;（模糊镜面反射）

• Time: motion-blur

Distributed Ray Tracing

point light

area light

jaggies antialiasing• Effects

Soft shadow

&

Anti-

Aliasing

Distributed Ray Tracing

• Effects

glossy reflection

Distributed Ray Tracing

• Effects

motion blur

Distributed Ray Tracing

• Effects

depth of field

Other techniques

• Beam(光束) tracing

– Beam tracing is a derivative of the ray tracing algorithm

that replaces rays, which have no thickness, with beams.

Beams are shaped like unbounded pyramids.

– In beam tracing, a pyramidal beam is initially cast

through the entire viewing frustum. This initial viewing

beam is intersected with each polygon in the

environment, from nearest to farthest. When a beam

intersects with a reflective or refractive polygon, a new

beam is created in a similar fashion to ray-tracing.

Beam Tracing

• General idea

– utilize the continuity

of rays to accelerate

– For example, test

intersecting

a beam with a convex polygon, if the 4 corner ray of the

beam intersects with the polygon, then all rays inside the

beam would intersect with the polygon

beam.ppt

Other techniques

• Selected ray tracing and Interpolation

– We can select pixel for ray racing, for example, we may

trace pixel of corners of 2*2, 3*3or 4*4 block

– Then interpolate colors

• Better pixel selection by Wavlet

– a technique using wavelet for importance

sampling.

– (importance sampling is the term for "how to

choose important sample points").

– See Video（Wis-Video）

../../2007/cg9_2007/wis_video.mp4
../../2007/cg9_2007/wis_video.mp4
../../2007/cg9_2007/wis_video.mp4
../../2007/cg9_2007/wis_video.mp4
../../2007/cg9_2007/wis_video.mp4
../../2007/cg9_2007/wis_video.mp4

• Domo of ray tracing

– RPU: a programmable Ray Processing Unit for

real-time ray tracing

rpu_video_2xfpga

– The RPU is a fully programmable ray tracing

hardware, with support for programmable

material, geometry and lighting. (This is a

Siggraph2005 paper)

– See video

../../2007/cg9_2007/rpu_video_2xfpga.avi

Thanks!

