Computer Graphics

Shi-Min Hu

Tsinghua University

History of Ray Tracing (J6£& IR ER)

* In 1980, Whitted proposed a ray tracing
model, include light reflection and

refraction effects. A Milestone of
Computer Graphics.

e Turner Whitted , An improved illumination
model for shaded display, Communications of
the ACM, v.23 n.6, p.343-349, June 1980.

i ={—

Introduction Simulating the Real World Real-Time Ray-Tracing Advanced FX
Welcome to WRT

Introduction

Ever since it's proposition in 1968 by Appel, ray tracing has become
the de facto standard in rendering high quality virtual objects in
true-to-life detail. As computer systems become increasingly more
powerful, the level of quality and detail that can be realistically
achieved exponentially increases and more and more complex
rendering processes become available.

In 1980, Turner Whitted submitted his elegant ray tracing model that
we will now use to demonstrate the classic method of rendering a
three dimensional scene using the process of casting light rays. This
web-site does not focus on the Whitted method alone but rather uses
it as a reference point from which to demonstrate the mathematical
techniques involved in ray path tracing and related methods such as
global illumination.

Use the links listed on toolbars above to navigate the site.
Alternatively, you can click the Begin button below and Follow the
navigation markers to be systematically stepped through each page.

http://www.raytracing.co.uk/study/home.htm
http://www.raytracing.co.uk/study/home.htm

 After receiving his PhD from NCSU in 1978,
Turner Whitted left for Bell Labs and proceeded to
shake the CGI world with an algorithm that could
ray-trace a scene In a reasonable amount of time.

» He only has 14 papers, and Ray tracing is his first
paper.

it NATIONAL ACADEMY OF ENGINEERING

""' MEMBERSHIP WEBSITE

Dr. J. Turner Whitted (Print This)
Senior Researcher

Primary Work Institution: Microsoft Research
Election Year: 2003
Primary Membership Section: 05. Computer Science & Engineering

Country: United States
State: WA

Member Type: Member

Election Citation:
For contributions to computer graphics, notably recursive ray-tracing.

» He was elected as member of National Academy
of Engineering in 2003.

Ray Tracing(Jt£& R Ex)

 Introduction of ray tracing
 Ray intersection(JtZ 3K 3%)
» shadows(FAR2)

« Transparence and specular reflection
(GE M BETE [5T)
e textures(4C)

Introduction of ray tracing

« Ray tracing
— Because of its effectiveness, ray tracing is a

widely used and very powerful rendering
(drawing) technique

— Why we see objects?

 Light can be interpreted as a collection of rays
that begin at the light sources and bounce around
the objects in the scenes.

» We see objects become rays finally come into our
eyes.

Basic lIdea of ray tracing

» Think of the frame buffer as a simple array of
pixels, with eye looking through it into the scene

* For each pixel, what can we “see”?

* aray casting from the eye through the center of the
pixel and out into the scene, its path is traced to see
which object the ray hits first

« calculate the shading value of the point
by the Phong model

 continue to trace the ray
In the scene to achieve
reflection, refraction..

Introduction of ray tracing

* Features

— Easy to incorporate interesting visual effects,
such as shadowing, reflection and refraction,
since the path of a ray is traced through the
scene

— Besides geometric primitives
(such as spheres, cones, cubes),

easy to work with a richer
class of objects, including
polygonal meshes, compound -

objects. ’\ o

Recursive Ray Tracing

\ Y Y 1 ¥ F F 7S
e ey o

Recursive Ray Tracing

IntersectColor(vBeginPoint, vDirection)

{

Determine IntersectPoint;
Color = ambient color;
for each light
Color += local shading term;
if (surface is reflective)
color += reflect Coefficient *

IntersectColor (IntersecPoint,

else if (surface is refractive)
color += refract Coefficient *

IntersectColor (IntersecPoint,

return color;

Reflect Ray);

Refract Ray);

demos of ray tracing

« DENG Jia (712 X8%)’ s Demo

« Deng Jia, 2002-2006, Tsinghua University, No.
1 in GPA.

« 2006- , Princeton Univetrsity, published a
paper on relief in ACM SIGGRAPH 2007

demo_邓嘉.avi

Ray intersection (3&£&3R%%)

» Ray tracing
— Ray Representation
— Plane intersection
— Triangle intersection
— Polygon intersection
— Sphere intersection
— Box intersection

Ray representation

« Parametric representation
-~ Pt)=R, +t* R,
— where R,=(X,.Y..Z,) is the original point of the ray,

R=(Xg4,Y4:Zg) 1S the direction the ray is going on, usually
the direction is normalized

— t value determines the point the ray arrives at, its value
IS

always larger than 0

direction
R, origin
R

0]

Plane Intersection

* Plane Definition
— Explicit: P,=(x,,y,,2,), n=(A,B,C)
— Implicit: H(P) = Ax+By+Cz+D =0

=nP+D=0
» Point Plane Distance -4
— If ni1s normalized, QP
the distance is d = H(P) | lnormal
— But note that, d : P

IS signed distance

Plane Intersection

* Where does the ray intersect this plane?
* Given a plane with equation:
nP+D=0;
 Intersection means satisfy both equations:
P() =R, +t* R,
n P(t)+D = 0;

\
t=-(D+n R)/(n-Ry)

 Just need to verify if t>0

Triangle Intersection

» In real-time graphics, triangle geometry
(triangle mesh) iIs usualy stored, and each
triangle is defined by three vertices.

» There exists many different ray/triangle
Intersection methods, main steps are:

— First compute the intersection point between the
ray and the triangle’s plane

— Thereafter, project the intersection point onto
the triangle’s plane

— Decide whether or not the point is inside the
triangle

Triangle Intersection

« Barycentric coordinates:

— A point P, on a triangle P,P,P,, is given by the
explicit formula:

P =ab, + fH + 7P,

where (¢, 3,) are the barycentric coordinates,

which must satisfy 0< e, 8,y <lLa+[+y =1

— Note that the barycentric coordinates
could be used for texture mapping,

normal interpolation,
color interpolation, etc.

Py

Triangle Intersection

« Since o+ B + vy =1, we can write o =1—

have:
P=(1-f-y)P+BP,+7P,

B_Y,We

 Set ray equation equal to barycentric equation:
R, Ry =(1-L-»)R + SR+ /P,

» Rearrange the terms, gives: N

(Rj%—ﬂl%—%)ﬂ

\7

:%_RO

» The means the barycentric coordinate and distance t
can be found by solving this linear system of

equations

Triangle Intersection

» Denoting E,=R-R,E,=R-P,,S=R -R,
the solution to the equation above is obtained by
Cramer’s rule:

(1) . (det(S,E,,E,))
— det(d,S,E

P det(d,E,, E,) (2)

7) \oet(d,El,S))

 Thencheck 0<p,y<1B+y<1 o
to determine whether or not the intersect point is
Inside the triangle

Polygon Intersection

« Even though triangles are the most common
rendering primitive, a routine to compute the
Intersection between a ray and a polygon is
useful.

» A polygon of n vertices is defined by an ordered
vertex list {vy,Vy,...,v, 1}, Where vertex v, forms
an edge with for 0 <=1<n-1, and the polygon is
closed by the edge from v, ; to v,. The plane of
the polygon is denoted by

T, np-x+dp=0

Polygon Intersection

« We first compute the
Intersection between the ray
and the plane. The solution has
been presented In previous slides.

 |If there Is an intersection, next
we need to determine whether
or not the intersection point P Is inside the

polygon.

* This is done by projecting all vertices and P
to one of the Xy-,xz-,yz planes, as shown iIn
the figure

.

Polygon Intersection

« The question left is a 2D point-in-polygon
problem. Here we review one of the most
useful algorithm — the crossing test

* The crossing test Is based on Jordan Curve
Theorem, which says that a point is inside a
polygon if a ray from this point in an
arbitrary direction crosses an odd (& H))
number of edges. This test is also known as
the even-odd test.

Polygon Intersection

A ———

* The crossing test is illustrated in the right
figure:
— Two black points inside polygon (cross one edge)

— two black points outside polygon (one crosses 2
edges and the other crosses 0 edge)

* The crossing test Is the fastest test that
does not use

preprocessing

(AL)

Polygon Intersection

* The test point P can also be thought of as
being at the origin, and the edges may be
tested against the positive x-axis instead

— If the y-coordinates of the edge have the same
sign, then the edge does not cross x-axis

— Else, compute the x-coordinate of the
Intersection between x-axis and the edge

o If positive, the edge crosses x-axis, the number of
crossing increases by 1

 Else, the edge does not cross the x-axis

 The other method

Chap4 add.ppt

Sphere Intersection

 Now, let’s look at the intersection test
between a ray and a sphere

 Mathematical solution

— sphere defined as:

- acenter poinP, , and aradiusr ; the implicit
formula for thé sphere IS :
f(P)=||P-PJ-r=0
— To solve for the intersection between a ray
and a sphere, simply replage P in the ray
equation to yield:

>

direction origin

PP -r ¢

Sphere Intersection: Algebra method

* The equation of last page Is simplified as
follows:

PR =0 -z
|R, +tRy =P, =T
(R, +tR; —P)- (R, +tR, —P,) = r’

(R, *Ry) +2U(Ry - (Ry = P)) + (R, = P) - (R, —P,) —r* =0
Since Rd i1s normalized:
t*+2t(R, - (R, —P)) + (R, —P)-(R,—P.)—r* =0

Rewrite as: t°+2tbh+c=0

Solutionis: t=—b++/b%—c

Sphere Intersection

* Previous algebra solution could be
Improved, e.g., observing that intersections
behind the ray origin are not needed

« An optimized Solution: Geometric method
— Easy reject (No intersection testing)
— Easy to check ray origin inside or outside the sphere
— Easy to check which point is closed to ray from
sphere origin
— Ray direction: pointing to or away from sphere

Sphere Intersection: Geometric Method

« Optimized Solution

— We first compute the vector | from the ray
origin to the center of the sphere:

=P —R,

Sphere Intersection

« Optimized Solution
|

=P —R,

— Is ray origin inside/outside the sphere?

* Inside the sphere:
« Outside the sphere:
* On the sphere:

)

<r?
2 2
>Tr
:r2

—

—2

— If ray origin is on the sphere, be careful

about degeneracy

Sphere Intersection

— Next, Find closest point to sphere
center: -
t,=I-R,

o If origin outside & t, <0 — no hit

—the sphere Is behind the ray origin and
we can reject the intersection

Sphere Intersection

— Next, find squared distance d from the
sphere center to the closest point

—2
d? =1 —t§
— Ifd>r, no hit

Sphere Intersection

— Find distance (t") from closest point (t;) to
correct intersection: t’2=r?- d?
— Then the solution will be
« If origin outside sphere — t =1, -t" ()
« If origin inside sphere — t=1, +1’

Box Intersection

« Ray/Box Iintersection test are important in graphics,
since we often bound geometric objects with boxes,

which is called bounding box (. F £5).

— With bounding box, when
testing a ray intersect with
an object, we first test the ray
Intersect with the bounding box,
If not intersected, then the ray
will not intersect with the object
definitely.

Box Intersection

 Here, we introduce a slab based method
for box intersection test, proposed by
Haines

— Aslab is simply two parallel planes, which
are grouped for faster computation o

— A box Is composed of 3 slabs

As illustrated in the right figure
In 2D

Box Intersection

« For each slab, intersecting with the ray,
there 1Is a minimum t value and maximum t

value, these are called t™and t™. (i=0,1,2)
* The next step Is to compute:

min ¢mMin ¢£min\.
;)

t™ = max(t,", t;
™ = min(t™™, t™, t7>);
 Now, the clever test:

— if t™ <t™ then the ray intersects the box
t™n is the enter-point, t™ Is the exit point

— Otherwise, no intersections

Box Intersection

» Look at the right figure,
there are 2 rays:

— The left ray intersects
with the box

it haS tmin <tmax
— The right ray misses
It does not have

tmin <tmax
 The idea Is the same with
Liang-Barsky Clipping

t Mmax

Box Intersection

* Woo0’s Method for intersection between a

ray and an axis-aligned box (7124 5 5i~F
1T)
— Woo introduced some smart optimjization

— specific for axis-aligned box

Box Intersection

* Woo’s Method

— First, identity three candidate planes out of the
six planes. For each pair of parallel planes, the
back—facing plane can be omitted for further
consideration.

— After finding the three planes
we computed the intersection
distances (t-value) between the
ray and the planes.

— The largest of the t-values
corresponds to a potential hit

Box Intersection

* Woo’s Method

— Use the potential hit t-value to compute the
Intersection point

— If the Intersection point is located on the face
of the box, then it is a real hit

* Slabs method vs Woo’s Method
— Comparable in performance

« With above discussion of ray intersection,
let’s ray tracing

The Simplest Ray Tracing: Ray Casting

» For each pixel

— Cast a ray from the eye, through the center
of pixel, to the scene
— For each object in the scene
 Find the intersection with the ray
» Store the closest point

— Calculate local
shading term of the
point according to

light, material .

and normal

The Simplest Ray Tracing: Ray Casting

» Shading results depend on surface
normal, light direction, light intensity,

view direction, material property and so

i
on I8
L .
* Do not account for secondary VIS
ray, so do not have shadow,

reflection and refraction effects

iffitse sphere neclilar spheres

D

Sample Code of Ray casting

A ———

» for each pixel
— cast a ray and find the intersection point

— 1f have intersection
e color = ambient

» for each light

color += shading from this light
(depending on light property and
material property)

e return color

— Else
» return background_color

Add Shadows

 For each pixel
— Cast a ray and find the intersection point
— color = ambient

— for each light

o If intersection point is not in shadow area of the light
(evaluated by shadow rays)
color += shading from this light

— return color

Add Shadows

 As illustrated in the figure below, casting a
shadow ray from intersection point to the light, if
there Is an intersection, this point is in shadow

&d@,
« We only want to know whether there is an <

/P?“
Intersection, not which one iIs closest

Add Ray reflection and refraction

 Ray tracing gives the ability to have objects with

mirror reflections or objects with refractions.

— The first step Is to determine where a ray intersects
the object.

— The next step is to determine the direction the ray
will travel when it reflects off the surface or refracts
through the object.

— a new ray direction is calculated based on the
Incoming ray and the surface normal.

Ray Reflections

« The law of reflection:
— the angle of incidence = the angle of reflection

— Incoming ray, reflection ray and normal is in the same
plane

» The reflection ray Is calculated as:
R=1-2(1-N)N NormaINA

Reflection R
— where |,N and R are Incidence |

all unit vectors

Ray Reflections

* As In the figure, reflection ray Is
symmetric with respect to the normal
from the view direction

Ray Refraction

* When light travels from one transparent medium
Into another, the direction of light can change
because of the relative densities of the media

Ray Refraction

* The law of refraction (also called Snell’s Law):

— the ratio of the of the angles of incidence and of
refraction Is a constant that depends on the media

— The constant Is called the relative refractive index

Snell’s Law:
ny sin y = n9 sin o

Ny

http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Sine

Ray Refractions

e Snell’s law gives:
178N 6, =1, sING;

1’ sin® @ =n; sin® 6,

7 (1—cos’ 6)) = nf (L—cos’ 6;)
21 2 _

The transmitted ray direction can now be calculated by :

T =1>x<l+(c036?T 1)*N
Tt 7t

Ray Refractions

The right way to catch fishes

y “j‘r"i \
|

Recursive Ray Tracing

\ Y Y 1 ¥ F F 7S
e ey o

Recursive Ray Tracing

IntersectColor(vBeginPoint, vDirection)

{

Determine IntersectPoint;
Color = ambient color;
for each light
Color += local shading term;
if (surface is reflective)
color += reflect Coefficient *

IntersectColor (IntersecPoint,

else if (surface is refractive)
color += refract Coefficient *

IntersectColor (IntersecPoint,

return color;

Reflect Ray);

Refract Ray);

Recursive Ray Tracing

* Does It ever end?
Stopping criteria:
« Recursion depth

— Stop after a number
of bounces

 Ray contribution

— Stop if reflected /
refracted contribution
becomes too small

Recursion ray tracing results

O recursion 1 recursion 2 recursions

Add Texture(Z(3)

« Computer generated images can be more realistic
by painting textures on various surfaces.

— 2D Texture
— 3D Texture

— As shown In the
figure, the floor
IS textured by a
chess board

Add Texture(4LHE)

« 2D texture
— Take a rectangle for example

» Specify 2D texture coordinate(Z(F#
4 corner points

AR FR) for

e calculate the 2D texture coordinate of the

Intersection point

 Use this 2D texture coordinate
to look-up the texture image,
assign this value to the
Intersection point

— We will discuss more at “Texture course”

Consideration of Ray Tracing

* Epsilon problem.

— when a ray is tangent(H1])) to a
plane/sphere, a ray intersects with a polygon
at its vertex ...

e Acceleration
— Bounding box
— Hierarchical Structure

Does Ray Tracing simulate physics?

» Photons go from the light to the eye,
not the way we used In ray tracing algorithm

« What we do Is backward ray tracing, photon go
from the eye to the light Wz
&

Forward Ray Tracing

o Start from the light source
— But low probability to reach the eye

 What can we do about 1t?

— Always send a ray to the eye.... still not efficient

—3

Does Ray Tracing Simulate Physics?

» Ray Tracing Is full of dirty tricks

« For example, shadows of transparent objects:
— opaque?
— multiply by transparency color?

Some demos of ray tracing

—E e

__

Some demos of ray tracing

Some demos of ray tracing

Some demos of ray tracing

« DENG Jia (312 X8%)’ s Demo

* Deng Jia’s story in Media computing

demo_邓嘉.avi

Video Repetition

* Flamingo coming

Mortion Gallery

'HJ ”4)f’ J' H «m,yr‘_‘J.«“u Im

38441 . 3{1111.» 2 -J, 4;. / pﬂ&. R

— g Sy

R ——

« | want a super car

../../../media computing/video/car_ori.avi
../../../media computing/video/car2.avi

Some demos of ray tracing

—_—

« GAO Yue(112 B&)’s Demo
 Gao YueisaPhD in GCC Group

TraceRay_高岳.exe

e Further Demo 1

e Further Demo 2

» P RIEM

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm

Assignments

* Projects (60%)
— Project 1 (Simple Ray Tracing) (30%0)
« Contain primitives of cube, polyhedron, sphere

 Effects : phong model, texture, mirror, transparent,
shadow

« Optional: other BRDF models, acceleration
techniques, high dimensional texture, soft

shadows ...
« CANNOT use OpenGL

Thanks!

