
Computer Graphics

Shi-Min Hu

Tsinghua University

History of Ray Tracing (光线跟踪)

• In 1980, Whitted proposed a ray tracing

model, include light reflection and

refraction effects. A Milestone of

Computer Graphics.

• Turner Whitted ，An improved illumination

model for shaded display， Communications of

the ACM, v.23 n.6, p.343-349, June 1980.

• http://www.raytracing.co.uk/study/home.htm

http://www.raytracing.co.uk/study/home.htm
http://www.raytracing.co.uk/study/home.htm

• After receiving his PhD from NCSU in 1978,

Turner Whitted left for Bell Labs and proceeded to

shake the CGI world with an algorithm that could

ray-trace a scene in a reasonable amount of time.

• He only has 14 papers, and Ray tracing is his first

paper.

• He was elected as member of National Academy

of Engineering in 2003.

Ray Tracing(光线跟踪)

• Introduction of ray tracing

• Ray intersection(光线求交)

• shadows(阴影)

• Transparence and specular reflection

(透明和镜面反射)

• textures(纹理)

Introduction of ray tracing

• Ray tracing

– Because of its effectiveness, ray tracing is a

widely used and very powerful rendering

(drawing) technique

– Why we see objects?

• Light can be interpreted as a collection of rays

that begin at the light sources and bounce around

the objects in the scenes.

• We see objects become rays finally come into our

eyes.

Basic Idea of ray tracing

• Think of the frame buffer as a simple array of
pixels, with eye looking through it into the scene

• For each pixel, what can we “see”?

• a ray casting from the eye through the center of the
pixel and out into the scene, its path is traced to see
which object the ray hits first

• calculate the shading value of the point

by the Phong model

• continue to trace the ray

in the scene to achieve

reflection, refraction..

Introduction of ray tracing

• Features
– Easy to incorporate interesting visual effects,

such as shadowing, reflection and refraction,
since the path of a ray is traced through the
scene

– Besides geometric primitives
(such as spheres, cones, cubes),

easy to work with a richer
class of objects, including
polygonal meshes, compound
objects.

Recursive Ray Tracing

Recursive Ray Tracing

IntersectColor(vBeginPoint, vDirection)

{

Determine IntersectPoint;

Color = ambient color;

for each light

Color += local shading term;

if(surface is reflective)

color += reflect Coefficient *

IntersectColor(IntersecPoint, Reflect Ray);

else if (surface is refractive)

color += refract Coefficient *

IntersectColor(IntersecPoint, Refract Ray);

return color;

}

demos of ray tracing

• DENG Jia (计2 邓嘉)’s Demo

Play Video
• Deng Jia, 2002-2006, Tsinghua University, No.

1 in GPA.

• 2006- , Princeton Univetrsity, published a

paper on relief in ACM SIGGRAPH 2007

• Deng Jia’s story in Media computing (late)

demo_邓嘉.avi

Ray intersection (光线求交)

• Ray tracing

– Ray Representation

– Plane intersection

– Triangle intersection

– Polygon intersection

– Sphere intersection

– Box intersection

Ray representation

• Parametric representation

– P(t) = Ro + t * Rd

– where Ro=(xo,yo,zo) is the original point of the ray ,

Rd=(xd,yd,zd) is the direction the ray is going on, usually

the direction is normalized

– t value determines the point the ray arrives at, its value

is

always larger than 0

Rd
Ro

origin
direction

P(t)

Plane Intersection

• Plane Definition

– Explicit: Po=(xo,yo,zo), n=(A,B,C)

– Implicit: H(P) = Ax+By+Cz+D = 0
= n·P + D = 0

• Point Plane Distance

– If n is normalized,
the distance is d = H(P)

– But note that, d
is signed distance

HPo

normal
P

P'
H(p) = d < 0

H(p) = d > 0

Plane Intersection

• Where does the ray intersect this plane?

• Given a plane with equation:

n·P + D = 0;

• Intersection means satisfy both equations:
P(t) = Ro + t * Rd

n·P(t)+D = 0;

So we have

t = -(D+n·Ro)/(n· Rd)

• Just need to verify if t>0
P(t)

Triangle Intersection

• In real-time graphics, triangle geometry
(triangle mesh) is usualy stored, and each
triangle is defined by three vertices.

• There exists many different ray/triangle
intersection methods, main steps are:
– First compute the intersection point between the

ray and the triangle’s plane

– Thereafter, project the intersection point onto
the triangle’s plane

– Decide whether or not the point is inside the
triangle

Triangle Intersection

• Barycentric coordinates:

– A point P, on a triangle P0P1P2, is given by the

explicit formula:

where are the barycentric coordinates,

which must satisfy

– Note that the barycentric coordinates

could be used for texture mapping,

normal interpolation,

color interpolation, etc.

0 1 2P P P P

(, ,)
0 , , 1, 1

P0

P

P1
P2

Triangle Intersection

• Since =1, we can write 1 We
have:

• Set ray equation equal to barycentric equation:

• Rearrange the terms, gives:

• The means the barycentric coordinate and distance t
can be found by solving this linear system of
equations

0 1 2(1)P P P P

0 1 2+ (1)o dR tR P P P

0 1 0 2 0 0()d

t

R P P P P P R

Triangle Intersection

• Denoting
the solution to the equation above is obtained by
Cramer’s rule:

• Then check
to determine whether or not the intersect point is
inside the triangle

1 0 1 2 0 2 0 0, E ,E P P P P S P R

1 2

2

1 2

1

det(, ,)
1

det(, ,)
det(, ,)

det(, ,)

S E Et

d S E
d E E

d E S

0 , 1, 1

Polygon Intersection

• Even though triangles are the most common

rendering primitive, a routine to compute the

intersection between a ray and a polygon is

useful.

• A polygon of n vertices is defined by an ordered

vertex list {v0,v1,…,vn-1}, where vertex vi forms

an edge with for 0 <= i < n-1, and the polygon is

closed by the edge from vn-1 to v0. The plane of

the polygon is denoted by
: 0p p pn x d

Polygon Intersection

• We first compute the
intersection between the ray
and the plane. The solution has
been presented in previous slides.

• If there is an intersection, next
we need to determine whether
or not the intersection point P is inside the
polygon.

• This is done by projecting all vertices and P
to one of the xy-,xz-,yz planes, as shown in
the figure

P

Polygon Intersection

• The question left is a 2D point-in-polygon
problem. Here we review one of the most
useful algorithm – the crossing test

• The crossing test is based on Jordan Curve
Theorem, which says that a point is inside a
polygon if a ray from this point in an
arbitrary direction crosses an odd(奇数的)
number of edges. This test is also known as
the even-odd test.

Polygon Intersection

• The crossing test is illustrated in the right
figure:

– Two black points inside polygon (cross one edge)

– two black points outside polygon (one crosses 2
edges and the other crosses 0 edge)

• The crossing test is the fastest test that

does not use

preprocessing

(预处理)

Polygon Intersection

• The test point P can also be thought of as
being at the origin, and the edges may be
tested against the positive x-axis instead

– If the y-coordinates of the edge have the same
sign, then the edge does not cross x-axis

– Else, compute the x-coordinate of the
intersection between x-axis and the edge

• If positive, the edge crosses x-axis, the number of
crossing increases by 1

• Else, the edge does not cross the x-axis

• The other method

Chap4 add.ppt

Sphere Intersection

• Now, let’s look at the intersection test
between a ray and a sphere

• Mathematical solution
– sphere defined as:

• a center point , and a radius r ; the implicit
formula for the sphere is :

– To solve for the intersection between a ray
and a sphere, simply replace P in the ray
equation to yield:

() 0cf P P P r

() 0cP t P r

cP

Sphere Intersection: Algebra method

• The equation of last page is simplified as
follows:

() 0cP t P r

0 d cR tR P r

2

0 0() ()d c d cR tR P R tR P r

2 2

0 0 0() 2 (()) () () 0d d d c c ct R R t R R P R P R P r

2 2

0 0 02 (()) () () 0d c c ct t R R P R P R P r

Since Rd is normalized:

2 2 0t tb c Rewrite as:

2t b b c Solution is:

Sphere Intersection

• Previous algebra solution could be

improved, e.g., observing that intersections

behind the ray origin are not needed

• An optimized Solution: Geometric method

– Easy reject (No intersection testing)

– Easy to check ray origin inside or outside the sphere

– Easy to check which point is closed to ray from

sphere origin

– Ray direction: pointing to or away from sphere

Sphere Intersection: Geometric Method

• Optimized Solution

– We first compute the vector from the ray
origin to the center of the sphere:

l

0cl P R

Ro

r

Pc

Rd

Sphere Intersection

• Optimized Solution
– compute the vector from the ray origin to

the center of the sphere:

– Is ray origin inside/outside the sphere?
• Inside the sphere:

• Outside the sphere:

• On the sphere:

– If ray origin is on the sphere, be careful
about degeneracy

l

0cl P R

2
2l r

2
2l r

2
2l r

Sphere Intersection

– Next, Find closest point to sphere
center:

• If origin outside & tP < 0 → no hit

– the sphere is behind the ray origin and
we can reject the intersection

p dt l R

Ro

Pc

Rd

r

tP

Sphere Intersection

– Next, find squared distance d from the
sphere center to the closest point

– If d>r , no hit

Ro

Pc

Rd

d

tP

r

2
2 2

pd l t

Sphere Intersection

– Find distance (t’) from closest point (tP) to

correct intersection: t’2 = r2 - d2

– Then the solution will be

• If origin outside sphere → t = tP - t’ ()

• If origin inside sphere → t = tP + t’

t

Ro

O

Rd

d

tP

r

t’

Box Intersection

• Ray/Box intersection test are important in graphics,

since we often bound geometric objects with boxes,

which is called bounding box(包围盒).
– With bounding box, when

testing a ray intersect with

an object, we first test the ray

intersect with the bounding box,

if not intersected, then the ray

will not intersect with the object

definitely.

Box Intersection

• Here, we introduce a slab based method

for box intersection test, proposed by

Haines

– A slab is simply two parallel planes, which

are grouped for faster computation

– A box is composed of 3 slabs

As illustrated in the right figure

in 2D

Slabs

Box Intersection

• For each slab, intersecting with the ray,
there is a minimum t value and maximum t
value, these are called and . (i=0,1,2)

• The next step is to compute:

• Now, the clever test:
– if ,then the ray intersects the box

is the enter-point, is the exit point

– Otherwise, no intersections

min min min min

0 1 2

max max max max

0 1 2

max(, ,);

min(, ,);

t t t t

t t t t

max

it
min

it

min maxt t
mint

maxt

Box Intersection

• Look at the right figure,
there are 2 rays:
– The left ray intersects

with the box
it has

– The right ray misses
it does not have

• The idea is the same with

Liang-Barsky Clipping
min

0t

min

1t

max

0t

max

1t

min

0t

min

1t

max

0t

max

1t

min maxt t

min maxt t

Box Intersection

• Woo’s Method for intersection between a

ray and an axis-aligned box(和坐标轴平

行)

– Woo introduced some smart optimization

– specific for axis-aligned box

m
in0

t

m
in1

t

Box Intersection

• Woo’s Method
– First, identity three candidate planes out of the

six planes. For each pair of parallel planes, the
back–facing plane can be omitted for further
consideration.

– After finding the three planes
we computed the intersection
distances (t-value) between the
ray and the planes.

– The largest of the t-values
corresponds to a potential hit

m
in0

t

m
in1

t

Box Intersection

• Woo’s Method
– Use the potential hit t-value to compute the

intersection point

– if the intersection point is located on the face
of the box, then it is a real hit

• Slabs method vs Woo’s Method
– Comparable in performance

• With above discussion of ray intersection,
let’s ray tracing

The Simplest Ray Tracing：Ray Casting

• For each pixel
– Cast a ray from the eye, through the center

of pixel, to the scene

– For each object in the scene
• Find the intersection with the ray

• Store the closest point

– Calculate local
shading term of the
point according to
light, material
and normal

The Simplest Ray Tracing: Ray Casting

• Shading results depend on surface

normal, light direction, light intensity,

view direction, material property and so

on

• Do not account for secondary

ray, so do not have shadow,

reflection and refraction effects

Sample Code of Ray casting

• for each pixel
– cast a ray and find the intersection point

– if have intersection
• color = ambient

• for each light
color += shading from this light

(depending on light property and
material property)

• return color

– Else
• return background_color

Add Shadows

• For each pixel

– Cast a ray and find the intersection point

– color = ambient

– for each light

• if intersection point is not in shadow area of the light
(evaluated by shadow rays)

color += shading from this light

– return color

Add Shadows

• As illustrated in the figure below, casting a

shadow ray from intersection point to the light, if

there is an intersection, this point is in shadow

• We only want to know whether there is an

intersection, not which one is closest

Add Ray reflection and refraction

• Ray tracing gives the ability to have objects with

mirror reflections or objects with refractions.

– The first step is to determine where a ray intersects

the object.

– The next step is to determine the direction the ray

will travel when it reflects off the surface or refracts

through the object.

– a new ray direction is calculated based on the

incoming ray and the surface normal.

Ray Reflections

• The law of reflection:

– the angle of incidence = the angle of reflection

– incoming ray, reflection ray and normal is in the same

plane

• The reflection ray is calculated as:

– where I,N and R are

all unit vectors

Normal N

Incidence I
Reflection R

2()R I I N N

Ray Reflections

• As in the figure, reflection ray is
symmetric with respect to the normal
from the view direction

Ray Refraction

• When light travels from one transparent medium

into another, the direction of light can change

because of the relative densities of the media

Ray Refraction

• The law of refraction (also called Snell’s Law):

– the ratio of the sines of the angles of incidence and of

refraction is a constant that depends on the media

– The constant is called the relative refractive index

http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Sine

Ray Refractions

• Snell’s law gives:

I

T

Өi

ӨT

N

-N

MηT

ηi

N cos Өi

– M sin Өi

sin sini i T T

2 2 2 2sin sini i T T

2 2 2 2(1 cos) (1 cos)i i T T

2 2

2

(1 cos)
cos 1 i i

T

T

The transmitted ray direction can now be calculated by :

(cos)i i
T

T T

T I N

Ray Refractions

The right way to catch fishes

Recursive Ray Tracing

Recursive Ray Tracing

IntersectColor(vBeginPoint, vDirection)

{

Determine IntersectPoint;

Color = ambient color;

for each light

Color += local shading term;

if(surface is reflective)

color += reflect Coefficient *

IntersectColor(IntersecPoint, Reflect Ray);

else if (surface is refractive)

color += refract Coefficient *

IntersectColor(IntersecPoint, Refract Ray);

return color;

}

Recursive Ray Tracing

• Does it ever end?

Stopping criteria:

• Recursion depth

– Stop after a number

of bounces

• Ray contribution

– Stop if reflected /

refracted contribution

becomes too small

Recursion ray tracing results

1 recursion0 recursion 2 recursions

Add Texture(纹理)

• Computer generated images can be more realistic

by painting textures on various surfaces.

– 2D Texture

– 3D Texture

– As shown in the

figure, the floor

is textured by a

chess board

Add Texture(纹理)

• 2D texture
– Take a rectangle for example

• Specify 2D texture coordinate(纹理坐标) for
4 corner points

• calculate the 2D texture coordinate of the
intersection point

• Use this 2D texture coordinate
to look-up the texture image,
assign this value to the
intersection point

– We will discuss more at “Texture course”

Consideration of Ray Tracing

• Epsilon problem.

– when a ray is tangent(相切) to a

plane/sphere, a ray intersects with a polygon

at its vertex …

• Acceleration

– Bounding box

– Hierarchical Structure

Does Ray Tracing simulate physics?

• Photons go from the light to the eye,

not the way we used in ray tracing algorithm

• What we do is backward ray tracing, photon go

from the eye to the light

Forward Ray Tracing

• Start from the light source

– But low probability to reach the eye

• What can we do about it?

– Always send a ray to the eye…. still not efficient

Does Ray Tracing Simulate Physics?

• Ray Tracing is full of dirty tricks

• For example, shadows of transparent objects:

– opaque?

– multiply by transparency color?

(ignores refraction & does not produce caustics)

Some demos of ray tracing

Some demos of ray tracing

Some demos of ray tracing

Some demos of ray tracing

• DENG Jia (计2 邓嘉)’s Demo

Play Video

• Deng Jia’s story in Media computing

demo_邓嘉.avi

Video Repetition

• Flamingo coming

• I want a super car

../../../media computing/video/car_ori.avi
../../../media computing/video/car2.avi

Some demos of ray tracing

• GAO Yue(计2 高岳)’s Demo

• Gao Yue is a PhD in GCC Group

Launch Application

TraceRay_高岳.exe

• Further Demo 1

• Further Demo 2

• 另一个大作业

• http://www.siggraph.org/education/materials/HyperGra

ph/raytrace/rtrace0.htm

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm

Assignments

• Projects (60%)

– Project 1 (Simple Ray Tracing) (30%)

• Contain primitives of cube, polyhedron, sphere

• Effects : phong model, texture, mirror, transparent,

shadow

• Optional: other BRDF models, acceleration

techniques, high dimensional texture, soft

shadows …

• CANNOT use OpenGL

Thanks!

