

Computer Graphics

Shi-Min Hu

Tsinghua University

History of Ray Tracing (光线跟踪)

 In 1980, Whitted proposed a ray tracing model, include light reflection and refraction effects. A Milestone of Computer Graphics.

- Turner Whitted, An improved illumination model for shaded display, Communications of the ACM, v.23 n.6, p.343-349, June 1980.
- http://www.raytracing.co.uk/study/home.htm

- After receiving his PhD from NCSU in 1978, Turner Whitted left for Bell Labs and proceeded to shake the CGI world with an algorithm that could ray-trace a scene in a reasonable amount of time.
- He only has 14 papers, and Ray tracing is his first paper.

Dr. J. Turner Whitted (Print This) Senior Researcher

Primary Work Institution: Microsoft Research Election Year: 2003 Primary Membership Section: 05. Computer Science & Engineering

Country: United States State: WA

Member Type: Member

Election Citation:

For contributions to computer graphics, notably recursive ray-tracing.

• He was elected as member of National Academy of Engineering in 2003.

Ray Tracing(光线跟踪)

- Introduction of ray tracing
- Ray intersection(光线求交)
- shadows(阴影)
- Transparence and specular reflection
 (透明和镜面反射)
- textures(纹理)

Introduction of ray tracing

- Ray tracing
 - Because of its effectiveness, ray tracing is a widely used and very powerful rendering (drawing) technique
 - Why we see objects?
 - Light can be interpreted as a collection of rays that begin at the light sources and bounce around the objects in the scenes.
 - We see objects become rays finally come into our eyes.

- Think of the frame buffer as a simple array of pixels, with eye looking through it into the scene
- For each pixel, what can we "see"?
- a ray casting from the eye through the center of the pixel and out into the scene, its path is traced to see which object the ray hits first
- calculate the shading value of the point by the Phong model
- continue to trace the ray in the scene to achieve reflection, refraction..

Introduction of ray tracing

- Features
 - Easy to incorporate interesting visual effects, such as shadowing, reflection and refraction, since the path of a ray is traced through the scene
 - Besides geometric primitives (such as spheres, cones, cubes),
 easy to work with a richer class of objects, including polygonal meshes, compound objects.

Recursive Ray Tracing

Recursive Ray Tracing

IntersectColor(vBeginPoint, vDirection)

```
Determine IntersectPoint;
Color = ambient color;
for each light
    Color += local shading term;
if(surface is reflective)
    color += reflect Coefficient *
        IntersectColor(IntersecPoint, Reflect Ray);
else if ( surface is refractive)
    color += refract Coefficient *
        IntersectColor(IntersecPoint, Refract Ray);
```

```
return color;
```

demos of ray tracing

- DENG Jia (计2 邓嘉)'s Demo <u>Play Video</u>
- Deng Jia, 2002-2006, Tsinghua University, No. 1 in GPA.
- 2006- , Princeton Univetrsity, published a paper on relief in ACM SIGGRAPH 2007
- Deng Jia's story in Media computing (late)

Ray intersection (光线求交)

- Ray tracing
 - Ray Representation
 - Plane intersection
 - Triangle intersection
 - Polygon intersection
 - Sphere intersection
 - Box intersection

Ray representation

- Parametric representation
 - $P(t) = R_o + t * R_d$

1S

P(t)

- where $R_o = (x_o, y_o, z_o)$ is the original point of the ray, $R_d = (x_d, y_d, z_d)$ is the direction the ray is going on, usually the direction is normalized
- t value determines the point the ray arrives at, its value
 - always larger than 0

Plane Intersection

- Plane Definition
 - Explicit: $P_o = (x_o, y_o, z_o), n = (A, B, C)$
 - Implicit: H(P) = Ax+By+Cz+D = 0= n P + D = 0

Plane Intersection

- Where does the ray intersect this plane?
- Given a plane with equation:
 n P + D = 0;
- Intersection means satisfy both equations:

P(t)

• Just need to verify if t>0

- In real-time graphics, triangle geometry (triangle mesh) is usualy stored, and each triangle is defined by three vertices.
- There exists many different ray/triangle intersection methods, main steps are:
 - First compute the intersection point between the ray and the triangle's plane
 - Thereafter, project the intersection point onto the triangle's plane
 - Decide whether or not the point is inside the triangle

- Barycentric coordinates:
 - A point P, on a triangle $P_0P_1P_2$, is given by the explicit formula:

 $P = \alpha P_0 + \beta P_1 + \gamma P_2$

where (α, β, γ) are the barycentric coordinates, which must satisfy $0 \le \alpha, \beta, \gamma \le 1, \alpha + \beta + \gamma = 1$

 Note that the barycentric coordinates could be used for texture mapping, normal interpolation, color interpolation, etc.

- Since $\alpha + \beta + \gamma = 1$, we can write $\alpha = 1 \beta \gamma$, We have: $P = (1 - \beta - \gamma)P_0 + \beta P_1 + \gamma P_2$
- Set ray equation equal to barycentric equation:

$$R_o + tR_d = (1 - \beta - \gamma)P_0 + \beta P_1 + \gamma P_2$$

• Rearrange the terms, gives:

$$(R_d P_0 - P_1 P_0 - P_2) \begin{pmatrix} t \\ \beta \\ \gamma \end{pmatrix} = P_0 - R_0$$

• The means the barycentric coordinate and distance t can be found by solving this linear system of equations

• Denoting $E_1 = P_0 - P_1$, $E_2 = P_0 - P_2$, $S = P_0 - R_0$ the solution to the equation above is obtained by Cramer's rule:

$$\begin{pmatrix} t \\ \beta \\ \gamma \end{pmatrix} = \frac{1}{\det(d, E_1, E_2)} \begin{pmatrix} \det(S, E_1, E_2) \\ \det(d, S, E_2) \\ \det(d, E_1, S) \end{pmatrix}$$

• Then check $0 \le \beta, \gamma \le 1, \beta + \gamma \le 1$ to determine whether or not the intersect point is inside the triangle

- Even though triangles are the most common rendering primitive, a routine to compute the intersection between a ray and a polygon is useful.
- A polygon of n vertices is defined by an ordered vertex list $\{v_0, v_1, \dots, v_{n-1}\}$, where vertex v_i forms an edge with for $0 \le i < n-1$, and the polygon is closed by the edge from v_{n-1} to v_0 . The plane of the polygon is denoted by

$$\pi_p: n_p \cdot x + d_p = 0$$

- We first compute the intersection between the ray and the plane. The solution has been presented in previous slides.
- If there is an intersection, next we need to determine whether or not the intersection point P is inside the polygon.
- This is done by projecting all vertices and P to one of the xy-,xz-,yz planes, as shown in the figure

- The question left is a 2D point-in-polygon problem. Here we review one of the most useful algorithm – the crossing test
- The crossing test is based on *Jordan Curve Theorem*, which says that a point is inside a polygon if a ray from this point in an arbitrary direction crosses an odd(奇数的) number of edges. This test is also known as the even-odd test.

- The crossing test is illustrated in the right figure:
 - Two black points inside polygon (cross one edge)
 - two black points outside polygon (one crosses 2 edges and the other crosses 0 edge)
- The crossing test is the fastest test that does not use preprocessing (预处理)

- The test point P can also be thought of as being at the origin, and the edges may be tested against the positive x-axis instead
 - If the y-coordinates of the edge have the same sign, then the edge does not cross x-axis
 - Else, compute the x-coordinate of the intersection between x-axis and the edge
 - If positive, the edge crosses x-axis, the number of crossing increases by 1
 - Else, the edge does not cross the x-axis

• <u>The other method</u>

- Now, let's look at the intersection test between a ray and a sphere
- Mathematical solution
 - sphere defined as:
 - a center point *P*, and a radius *r*; the implicit formula for the sphere is :

 $f(P) = ||P - P_c|| - r = 0$ - To solve for the intersection between a ray and a sphere, simply replace P in the ray equation to yield:

$$\left\|P(t) - P_c\right\| - r = 0$$

• The equation of last page is simplified as follows: $\|P(t) - P_c\| - r = 0$ $\|R_c + tR_c - P\| = r$

$$(R_0 + tR_d - P_c) \cdot (R_0 + tR_d - P_c) = r^2$$

 $t^{2}(R_{d} \cdot R_{d}) + 2t(R_{d} \cdot (R_{0} - P_{c})) + (R_{0} - P_{c}) \cdot (R_{0} - P_{c}) - r^{2} = 0$ Since Rd is normalized:

 $t^{2} + 2t(R_{d} \cdot (R_{0} - P_{c})) + (R_{0} - P_{c}) \cdot (R_{0} - P_{c}) - r^{2} = 0$

Rewrite as: $t^2 + 2tb + c = 0$ Solution is: $t = -b \pm \sqrt{b^2 - c}$

- Previous algebra solution could be improved, e.g., observing that intersections behind the ray origin are not needed
- An optimized Solution: Geometric method
 - Easy reject (No intersection testing)
 - Easy to check ray origin inside or outside the sphere
 - Easy to check which point is closed to ray from sphere origin
 - Ray direction: pointing to or away from sphere

- Optimized Solution
 - We first compute the vector \vec{l} from the ray origin to the center of the sphere:

Optimized Solution

- compute the vector from the ray origin to the center of the sphere:

$$\vec{l} = P_c - R_0$$

- Is ray origin inside/outside the sphere?

 - Inside the sphere: $\vec{l}_{1}^{2} < r^{2}$ Outside the sphere: $\vec{l}_{1}^{2} > r^{2}$
 - On the sphere: $\vec{l}^2 = r^2$
- If ray origin is on the sphere, be careful about degeneracy

- Next, Find closest point to sphere center: $t_p = \vec{l} \cdot R_d$

If origin outside & t_P < 0 → no hit

 the sphere is behind the ray origin and
 we can reject the intersection

Next, find squared distance d from the sphere center to the closest point

$$d^2 = \vec{l}^2 - t_p^2$$

– If d>r , no hit

- Find distance (t') from closest point (t_P) to correct intersection: $t'^2 = r^2 - d^2$
- Then the solution will be
 - If origin outside sphere $\rightarrow t = t_P t'$ ()
 - If origin inside sphere $\rightarrow t = t_P + t'$

Box Intersection

- Ray/Box intersection test are important in graphics, since we often bound geometric objects with boxes, which is called bounding box(包围盒).
 - With bounding box, when testing a ray intersect with an object, we first test the ray intersect with the bounding box, if not intersected, then the ray will not intersect with the object definitely.

Box Intersection

- Here, we introduce a slab based method for box intersection test, proposed by Haines
 - A slab is simply two parallel planes, which are grouped for faster computation
 - A box is composed of 3 slabs
 As illustrated in the right figure in 2D

- For each slab, intersecting with the ray, there is a minimum t value and maximum t value, these are called t_i^{\min} and t_i^{\max} . (i=0,1,2)
- The next step is to compute:

 $t^{\min} = \max(t_0^{\min}, t_1^{\min}, t_2^{\min});$

 $t^{\max} = \min(t_0^{\max}, t_1^{\max}, t_2^{\max});$

• Now, the clever test:

- if $t^{\min} < t^{\max}$, then the ray intersects the box t^{\min} is the enter-point, t^{\max} is the exit point - Otherwise, no intersections

- Woo's Method for intersection between a ray and an axis-aligned box(和坐标轴平行)
 - Woo introduced some smart optimization

5 Di

E min

specific for axis-aligned box

- Woo's Method
 - First, identity three candidate planes out of the six planes. For each pair of parallel planes, the back-facing plane can be omitted for further consideration.
 - After finding the three planes we computed the intersection distances (t-value) between the ray and the planes.
 - The largest of the t-values corresponds to a potential hit

- Woo's Method
 - Use the potential hit t-value to compute the intersection point
 - if the intersection point is located on the face of the box, then it is a real hit
- Slabs method vs Woo's Method
 - Comparable in performance
- With above discussion of ray intersection, let's ray tracing

The Simplest Ray Tracing: Ray Casting

- For each pixel
 - Cast a ray from the eye, through the center of pixel, to the scene
 - For each object in the scene
 - Find the intersection with the ray
 - Store the closest point
 - Calculate local shading term of the point according to light, material and normal

The Simplest Ray Tracing: Ray Casting

- Shading results depend on surface normal, light direction, light intensity, view direction, material property and so on
- Do not account for secondary ray, so do not have shadow, reflection and refraction effects

Diffuse sphere

Sample Code of Ray casting

- for each pixel
 - cast a ray and find the intersection point
 - if have intersection
 - color = ambient
 - for each light
 - color += shading from this light
 (depending on light property and
 material property)
 - return color
 - Else
 - return background_color

Add Shadows

- For each pixel
 - Cast a ray and find the intersection point
 - color = ambient
 - for each light
 - if intersection point is not in shadow area of the light (evaluated by shadow rays)

color += shading from this light

return color

Add Shadows

- As illustrated in the figure below, casting a shadow ray from intersection point to the light, if there is an intersection, this point is in shadow
- We only want to know whether there is an intersection, *not* which one is closest

Add Ray reflection and refraction

- Ray tracing gives the ability to have objects with mirror reflections or objects with refractions.
 - The first step is to determine where a ray intersects the object.
 - The next step is to determine the direction the ray will travel when it reflects off the surface or refracts through the object.
 - a new ray direction is calculated based on the incoming ray and the surface normal.

Ray Reflections

Reflection R

- The law of reflection:
 - the angle of incidence = the angle of reflection
 - incoming ray, reflection ray and normal is in the same plane
- The reflection ray is calculated as: $R = I - 2(I \cdot N)N$ Normal N
 - where I,N and R are *Incidence* I all unit vectors

• As in the figure, reflection ray is symmetric with respect to the normal from the view direction

Ray Refraction

• When light travels from one transparent medium into another, the direction of light can change because of the relative densities of the media

Ray Refraction

- The law of refraction (also called Snell's Law):
 - the ratio of the <u>sines</u> of the angles of incidence and of refraction is a constant that depends on the media
 - The constant is called the relative refractive index

Ray Refractions

• Snell's law gives:

$$\eta_i \sin \theta_i = \eta_T \sin \theta_T$$

 $\eta_i^2 \sin^2 \theta_i = \eta_T^2 \sin^2 \theta_T$
 $\eta_i^2 (1 - \cos^2 \theta_i) = \eta_T^2 (1 - \cos^2 \theta_T)$
 $\cos \theta_T = \sqrt{1 - \frac{\eta_i^2 (1 - \cos^2 \theta_i)}{\eta_T^2}}$

The transmitted ray direction can now be calculated by :

$$T = \frac{\eta_i}{\eta_T} * I + (\cos \theta_T \frac{\eta_i}{\eta_T}) * N$$

Ray Refractions

Recursive Ray Tracing

Recursive Ray Tracing

IntersectColor(vBeginPoint, vDirection)

```
Determine IntersectPoint;
Color = ambient color;
for each light
    Color += local shading term;
if(surface is reflective)
    color += reflect Coefficient *
        IntersectColor(IntersecPoint, Reflect Ray);
else if ( surface is refractive)
    color += refract Coefficient *
        IntersectColor(IntersecPoint, Refract Ray);
```

```
return color;
```

Recursive Ray Tracing

- Does it ever end? Stopping criteria:
- Recursion depth
 - Stop after a number of bounces
- Ray contribution
 - Stop if reflected / refracted contribution becomes too small

Recursion ray tracing results

0 recursion

1 recursion

2 recursions

Add Texture(纹理)

- Computer generated images can be more realistic by painting textures on various surfaces.
 - 2D Texture
 - 3D Texture
 - As shown in the figure, the floor is textured by a chess board

Add Texture(纹理)

- 2D texture
 - Take a rectangle for example
 - Specify 2D texture coordinate(纹理坐标) for 4 corner points
 - calculate the 2D texture coordinate of the intersection point
 - Use this 2D texture coordinate to look-up the texture image, assign this value to the intersection point
 - We will discuss more at "Texture course"

- Epsilon problem.
 - when a ray is tangent(相切) to a plane/sphere, a ray intersects with a polygon at its vertex ...
- Acceleration
 - Bounding box
 - Hierarchical Structure

Does Ray Tracing simulate physics

- Photons go from the light to the eye, not the way we used in ray tracing algorithm
- What we do is *backward ray tracing*, photon go from the eye to the light

Forward Ray Tracing

- Start from the light source
 - But low probability to reach the eye
- What can we do about it?
 - Always send a ray to the eye.... still not efficient

Does Ray Tracing Simulate Physics?

- Ray Tracing is full of dirty tricks
- For example, shadows of transparent objects:
 - opaque?
 - multiply by transparency color?

(ignores refraction & does not produce caustics)

• DENG Jia (计2 邓嘉)'s Demo

Play Video

• Deng Jia's story in Media computing

Video Repetition

• Flamingo coming

• I want a super car

- GAO Yue(计2 高岳)'s Demo
- Gao Yue is a PhD in GCC Group

Launch Application

• Further Demo 1

• Further Demo 2

• 另一个大作业

• <u>http://www.siggraph.org/education/materials/HyperGra</u> <u>ph/raytrace/rtrace0.htm</u>

Assignments

- **Projects (60%)**
 - Project 1 (Simple Ray Tracing) (30%)
 - Contain primitives of cube, polyhedron, sphere
 - Effects : phong model, texture, mirror, transparent, shadow
 - Optional: other BRDF models, acceleration techniques, high dimensional texture, soft shadows ...
 - CANNOT use OpenGL

Thanks!