Computer Graphics

Shi-Min Hu
Tsinghua University

» Some Important concepts in Graphics
— Color
— Image & Pixel ()
— Triangle Mesh
— Lighting & Shading ()
» Transformation (Z&2#&) and Viewing

« What is Color?

— Colors are the sensations that arise from light
energy of different wavelengths

» electromagnetic waves (FLHZ) with different
wavelengths are corresponding to different colors

 Human’s eye are sensitive Visible Light Region
i of the
for electromagnetic wave Electromagnetic Spectrum
of wavelengths between 380

to 760 nm 4 -
;SOnm éOOnm éMnm 400n'$

1100nm

Infrared UltraViolet

Spectral Distribution of Light

. . . x apectral Distribuli
« “Light” is a mixture of many pectal RTnERan

wavelengths, each with

some Intensity
— E.g., White Light means light
Include all wavelengths with

Intensity

the same intensity.
Wavelength

» spectral distribution:
Intensity as a function of : B
Sample Color

wavelength over the entire
spectrum

S0, colors can be represented as such
distribution function

* However, use spectrum distribution for
color representation Is too complicated, and
the corresponds Is multiple-to-one.

* There exits a situation as “different
spectrum distribution with the same
color” (5 1% [F] £4,)

RGB Color Space

» \We first introduce color space for color
representation. RBG I1s commonly used
color space In Graphics

— Color is represented as RGB triple (r,g,b);

— People perform almost all operations on each
channel separately

— usually, each color value is a float value range
from 0 to 1, or 0-255 if we use 8 bit integers.

RGB Color Space

« Color are represented as combinations of
three primaries: red, , blue)
—~C=rR+gG +DbB
— The reason why we pick red, green, and blue?

» essentially because of the structure

of our visual system
 Our visual system Is sensitive to those three
colors

A demo for Color

RGB Color Space

« Color are represented as combinations of
three primaries: red, , blue)

-C=rR+gG+bB
— The reason why we pick red, green, and blue?

RGB Color Space

 Unfortunately ,Some
colors cannot be
written as
combinations of RGB

triples, because some

parts of the red curve S
IS negative

Other Color Spaces

« S0 some other color space are also used
— CMY
— HSV
— CIE XYZ

CMY

 CMY :The other set of primaries besides RGB

— Cyan(7), magenta (fH4L) , and yellow —
complements (kM) of red, green, blue

s]
.:1_G
ainl

e It’s called subtractive primaries (J# & & 40)

— RGB are additive primaries — start with black, add up
to white

— CMY — start with white and subtract colors from white

HSV Color space

 True color pictures with 3 components (RGB),
each has 256 possible value, so we have up to
16,777,216 possible colors.

 Controlling this huge amount of possibilities Is
almost impossible without the HSV space.

HSV provides an intuitive
method for color selection.

 Applications: Image
processing, fractal
pictures, ray tracing...

HSV

 HSV: a color space in cone-shaped

— Hue (£53%) means the base color, which is a main
factor indicates difference between colors.

— Saturation(#F1 %) is for purity of color (decrease
= adding white)

— Value of brightness(F %)
Luminance of lights,

(decrease = adding black

CIE XYZ

« CIE XYZ color space

— Proposed by CIE (International Commission on
[llumination) in 1931

* |t can represent all perceptible colors (while
RGB not)
— most used In color science
— based on human perception studies

CIE XYZ (Chromaticity Diagram)

This diagram shows how to use XYZ to
represent colors. Zisequalto 1 —x —.

490 ®
Blue
480

400

Purple

0.1 02 03 04 05 06 0.7 08

* Image

— Image could be treated as a 2-dimensional

discrete function f(x,y)

— each discrete grid is called pixel (&)
— Usually, each pixel has a RGB(or RGBA)

value for color image or
a scalar value for gray image

EE

. —v—o‘-‘ﬂ-rc bare
SEERSREESESS
28 1 T T

-4
R I RESS
18 4 T

 What’s objective of graphics?

— Glven a 3D scene and a camera position, generate
(render) a 2D Image.

— What Is the data structure/representation of 3D
scene?

* For Simple primitives, such as sphere, cube...

« Complex models, usually use triangle mesh or
parameter curves/surfaces

» Mesh Description: usually contains a list of
faces F, and a list of vertices V
— A list of faces F = (f,f2,.. 1)
 Each face Is a triangle
— A list of vertices V = (v1,V,...,vn)
— Each face in F is a list of indices in V

€.J.
fi --(V1,V2,V3), f2 “(V4,V5,V6),
f3 --(V7,V8,V9), ...

Some Samples

-

« Examples of triangle mesh models, a bull, a
dragon and a head model. We draw
triangles over bull model, and show the

other two models by shading.

Normal

 Face Normal

— Each face has a normal direction to define the orientation

e Vertex Normal A

— Each vertex is shared by m faces

Normal

— Compute normal by Interpolation
Nv= (Nfi+Nf2 ... + Nfm)/m

— or by area based Interpolation
Nv= (|F1[*Nsi+|F2|*Ns2 ... + |[Fm|[*Nm)/(|F1|+[F2|+...|[Fm)|)

Triangle Mesh

« Rendering of mesh models

— In each point of the mesh surface, we need to
specify a color

By Color: Given constant color to each face
* By lighting
—Suppose a light exists in the scene and
Illuminates the scene.

—How to calculate lighting?

Rendering results

e Wireframe
e Constant Color
« Lighting

 To calculate the intensity of light, we need
an lighting model (illumination model)

— Local Lighting

» Concerned with how objects are directly illuminated
by light sources

— Global Lighting
 Includes shadow effects

* Includes lighting effects from locations other than
light sources, such as reflections, refractions

History of Lighting

* In 1967, Wylie: first added lighting effects into
rendering

— Intensity Is inverse of the distance to the light
* In 1970, Bouknight: introduced the first lighting
model:

— Lambert diffuse reflection(i% & &%) + ambient (No
specular lighting) (FA3556)

* In 1971, Gourand: gourand shading
— Lambert diffuse + Bicentric interpolation

« In 1975, Phong: proposed extended the model by
further considering specular:
— Diffuse (38 k&%) +ambient (A3 +
specular (/=%)
— The most influenced lighting model

Related Physics: The propagation of light

» The propagation of lights obeys law of reflection:

— the angle of incidence = the angle of reflection

— Incoming ray, reflection ray and normal Is in the
same plane

Light Source Normal _
@) A Reflection

Incidence

* The law of refraction (also called Snell’s Law):

— the ratio of the sin of the angles of incidence and of
refraction Is a constant that depends on the media

— The constant Is called the relative refractive index

Snell’s Law:
ny sin#; = no sin o

Ny

Energy

 Propagation of lights should satisfy Energy
conservation :

L =1,+1 +1 +1,

— li i1s the energy of incident light

— ld Is the energy of diffuse reflection

— Isis the energy of specular reflection CE51H <5
— ltis the energy of refraction (#74+)

— lvis the energy that is absorbed

Measure of light

. Solid Angle (37ARf)

— How big an object appears to
an observer at pointP ds

— Max Value: 4 r

e Irradiance (ME) E

— E defined as: light energy per unit time arrived
at per unit area

« Radiance (KIGHRE) |

— | defined as: irradiance per unit solid angle

Phong Lighting Model

 Support point light or directional light

 Local lighting model

— Decompose lighting effects to 3 parts:
* Diffuse Reflection
 Specular Reflection

« Ambient lighting(to approximate the global
[llumination effects)

Phong Lighting Model Illustration

L is the incidence ray, V means the direction of the viewer, N is
the normal, and R is reflection of L; H is the half of L and VV

///////P S S

Phong Lighting Model

 Diffuse reflection
— The propagation of diffuse reflection rays is isotropic.
— The intensity of diffuse reflection is defined as:

Iy = 1;Ky *(L-N)

- K] IS the diffuse reflection constant

— Ky has three components kdr’kdg1kdb represent
R,G,B diffuse reflection constant respectively.

Kd Implies the base color of the model

Phong Lighting Model

« Specular reflection

— For glossy surfaces, the reflected rays always exist in a
very narrow solid angle area, determined by the direction
of reflection law

— The intensity of specular reflection is defined as:

. =LK *(R-V)"

— KS IS the specular reflection constant ; and n is the
shininess constant, which decides how shiny the

surface is.

Phong Lighting Model

« Ambient reflection

— To approximate global illuminations (including
indirect lighting, indirect reflection...)

— The intensity of ambient reflection is defined as:

| = 1K,

— KS Is the ambient reflection constant

Phong Lighting Model

« The reflection intensity is the sum of diffuse
reflection, specular reflection and ambient
reflection:

| = LK, + 1K *(R-V)"+ LK, *(L-N)

Example 1

Diffuse Ambient Specular

Example 2

0.8/0.2 0.6/0.4 0.4/0.6 0.2/0.8 0.0/1.0

Wu Jianhua’s Demo

Phong Demo.exe
http://cg.cs.tsinghua.edu.cn/course/

Phong and Gouraud Shading

 Highlights on

the surface are sometimes displayed

with anomalous C/AFENID shape, and the linear

Intensity inter
Intensity strea

Lig

polation can cause bright oe dark
Ks called

Nting or other parameters are

calculated in each vertex of the polygon, then in
each point inside the polygon, the intensity of
lighting is computed through bicentric interpolation
between the vertices.

« Two main algorithms
— Gouraud shading: interpolation of intensity,
— Phong shading: Interpolation of normal,

Gouraud shading

* Proposed by Gouraud in 1971
— Also called Gouraud interpolation

« Computation
— first calculate the color value of each vertex

— Interpolate the color values calculated at each
vertex

Phong shading

» Developed by Bui Tuong Phong in his 1973
PhD dissertation

— Note: 1t i1s different from Phong lighting model

« Computation

— Different from Gouraud shading, it does not
Interpolate color values, It interpolate surface
normal, and use the interpolated normal to
calculate the color value.

Comparison

only by lighting model

by Phong shading

« Why Transformation and Viewing

— Computer graphics renders high-quality
color images of a scene which Is composed
of 3D geometric models.

— Transformations Is extremely important in
graphics, With them, you can position,
reshape and animate objects, lights and
cameras

Why transformation: an example

« Suppose we already have a procedure to
draw a unit square [0,1]*[0,1]

 |f you want to write another procedure to
draw a 2D rectangle with one corner at
(lox, loy) and another diagonal corner at
(hix, hiy).

One Solution

« Rewrite the drawing rectangle procedure

drawRect (lox, loy, hix, hiy) {
glBegin (GL _QUADS) ;
glVertex2f (lox, loy);
glvVertex2f (hix, loy);
glVertex2f (hix, hiy);
glVertex2f (lox, hiy);
glEnd() ;

}

* Drawing a rectangle could be done like this, how
about drawing a complex model such as a teapot?

Solution using Transformation

drawRect (lox, loy, hix, hiy) {
glTranslate (lox, loy);
glScale (hix-lox, hiy-loy) ;
drawUnitSquare(0,0,1,1);

}

* This is a solution you should use in almost
all graphics application for better speed,
modularity, flexibility, ...

What is a Transformation(Z2#t)?

« A function that maps a point x to another
point x':
Applications: Morphing, deformation,
viewing, projection, real-time shadows, ...

Fig 1. Undeformed Plastic

Fig 2. Delormed Plastic

Simple Transformations

& &

[dentity Translation

———————

[sotropic
Rotation (Uniform)

Scaling

e [et’s see some intuitive transformation from left to

right:
— ldentity(A2R) , translation(3
isotropic scaling (¥ 45)
« Transformations can be combined together
— First rotate, then scale, then translate

« Transformations are invertible("] 1¥7) operators

7#%), rotation(jig¥%) and

Transformation Classification(43-28)

« Transformations could be classified into
these categories:
— Rigid-body Transformation (XI144<2%)
— Similarity Transformation(FH{LL 45)
— Linear Transformation (£ 445 #t)
— Affine Transformation(1Jj 5725)

— Projective Transformation(#% 545 #r)

Rigid-body Transformation

 Preserve distance, angle and size

 Include
— ldentity
— translation
— Rotation
— and combinations of them

Similarity Transformation

 Preserve angle
=
 |Include
— ldentity

A
1
i
i
1
i
|
. i il ol
— Translation
— Rotation

— Isotropic Scaling

\J

L Inear Transformation

 Preserve linearity of addition and scalar
multiplication :

L(p+q) = L(p) + L(q) al.(p) = L(ap)
* Include
— ldentity, Rotation, Scaling

— Reflection(%#R), Shear(¥128. BE§41))

— Shear in the x direction, pull the top to the right and the bottom to the left
s~ Buttranslation is not linear becqps\(_e_ of addition

Reflection

Affine Transformation

 Preserve parallel lines

— If two lines are parallel before
transformation, they are still parallel after
transformation b

e Include
— linear transformation
— similarity transformation

Projective Transformation i

 preserves lines,

Projective

Similarity

Riqid

Scaling

Identity

Translation

Isotropic Scaling Reflection

Rotation
Shear

\ O\

Transformation Representation

 Take 2D as an example:

X'=ax+hy+c

y'=dx +ey+f

» Represent it in vector-matrix form:

/X' N r a
\yl ~ \ d
pl

b\r N fC
edk J f
Mp + T

<

e Need 2 variables for transformation: M andt

pp = Mp +t
* If representing p, p’In homogenous coordinates
(FFIRALHR) The formula is rewritten as:

p' = Mp

*What’s homogenous coordinates?

Homogeneous Coordinates(FHikAEHR)

* The objective of HC is to use a 4D column matrices
to represent both points and vectors in 3D.

Formulation in E/2 Homogeneous formulation
~ R a b N
N rr N ¢ A r N Xl C X
a b ||X M -| @

— ‘ d e f
d e|ly f J y
0 ST T 1 0 0 1]|1
\. s -

Homogeneous Coordinates(55 X AL F5)

e Add an extra dimension

e In 2D, we use 3 x 3 matrices
e In 3D, we use 4 x 4 matrices

 Each point hag an extra value, w

X' a b c d X
y' _ | € f g h y
Z' 1] k | Z
W' \m n O P) W
p° = Mp

Homogeneous Coordinates

* Most of the tlme w =1, and we can ignore It
x| [a b ¢ d]/[x
v _|e f g hi|y
7 i ok 1|z
1 \ 0 0 0 1 1

» If we multiply a homogeneous coordinate
by an affine matrix, w Is unchanged; by an
projective matrix, the value of w will change

Homogeneous Visualization

« Ifw 1, can be divided by w to
normalize(H—4t) (homogenize)
—So (2x,2y,2z,2) Is equal to (x,y,z,1)

e W=07?

—this case, the homogenous coordinate

represent a direction (77 1A]) but not a
point.

Translate (tx, ty, t2) Translate(c,0,0)

y 4
* Why we introduce the —p
extra dimension? | X
Now translations can be CY X
encoded In the matrix!
X' 1 0 0) x\
vii=/0 1 0 t ||y
Z' 0 0 1 ¢t Z
- 1 J ~ O O O 1 ~ 1/

Scale (sx, Sy, Sz)

e Scale

Y 4

Scale(s,s,s)

@

’
’
’
’
’
’
’
’ -
7 P
s
e

p)

p'o

/

¢
7 q
q

— For scaling, a fixed point (usually
origin) i1s unchanged by the transformation

— Such scaling matrix with a fixed point of origin
allows independent scaling along the coordinate

axes |y’

<
1

Sx

0
0
S

0

0
0
0

1

X

y
A
1

Rotation

* There are 3 freedom corresponding

to our ability to rotate independently
Z

about the three coordinate axes.
« About z axis

/‘

>

<<

= N

\

/‘

-

cosd
sind
0
0

-SIng
cosd
0
0

o —»r O O

_, O O O

yA

ZRotate(0)

Py

4
/’
’
4
’
’
[]

’
’
4
4
4 -
’ -
-
4 -
’ 9 "’
’ -~
4 ‘,”
’ -
’_-

R, N < X

>
X

../../2007/cg2_2007/glut_demo.exe

Rotation

¢ AbOUt (kx, ky, kz), d Unlt
vector on an arbitrary axis z
{Rodrigues Formula)

kkx(1-C)+cC
kyk«(1-c)+k:s kokx(1-c)+cC
K:kx(1-C)-Kys Kekx(1-C)-KsS
L 0 0
where

Rotate(k, 6)

kki(1-C)-kss keko(1-C)+kys O

kk(1-c)-ks 0
kk(1-C)+C 0
0 111,

c=cosfd & S =sInd

P, N < X
J

Transformation Combination(&)

An Example: Scale then Translate

(5.3)

| (2,2) |
S 2,2 , T 3,1
1) X cale(2,2) ranslate(3,1) (3’1).

>

>

(0,0) (0,0)

Use matrix multiplication' pP=T(Sp) =TSp

‘1 03|[200] (203
TS=1|011/|l020|=1021
001|001 00 1

Notice: matrix multlpllcatlon is inverse

Non commutative(3Z #t) Composition

Scale then Translate: p' = T(Sp) = TSp

(2,2)
Scale(2,2 ; | :
@) X cale(2,2) Translate(3,1) (3’1).

>

(5.3)

(0,0) (0,0) >

Translate then Scale: p' = S(Tp) = STp

q q (8,4)
(L.1) Translate(3,1) o » (4,2) Scale(2,2) (6,2).
>

>

(0,0) >

Non-commutative Composition

The reason is because matrix multiplication is non-
commutative TS # ST

Scale then Translate: p' = T(Sp) = TSp

103[/200 2 0 3

IS=lo011/lo20|%]021

‘001 001 001
Translate then Scale: p' = S(Tp) = STp

200[[103 2 06

ST =lp20|l011|=|022

‘001 001 001

Transformation of Normals(y%[a])

 Surface Normal: unit vector that iIs locally
perpendicular to the surface

* One of the most important geometric
property of surfaces

Why Is the Normal important?

* It's used for shading — makes things look
3D!

« All kinds of lighting models utilized surface
normal In the lighting computation

object color only Diffuse Shading

Transform Normal like Object?

e Could we transform the
normal like objects?

 We could find that
translation, rotation and
Isotropic scale preserve the
correct normal.

« But shear does not (the-r}
bottom Iimage.)

Transform Normal like Object?

« Another example

—We scale an sphere
(but not Isotropic
scale).

— The transformed *
normal 1s also

Incorrect. *

Transformation for shear and scale

Incorrect
Normal
Transformation

how could we transform normal correctly?

Correct
Normal
Transformation

How to transform normal?

» transforming the tangent plane (VJ-F[f) to
the normal, not the normal vector directly

Nos Nyys

Original Incorrect Correct
Pick any vector v In the tangent plane to

transform

Viws = M Vg

Transform tangent vector v
v IS perpendicular to normal n:

Dot product nOST Vog =
Nos' (M1 M) vog =
(Nos" M) (M vge) =

(Nos' M) vys = 0

Vs 1S perpendicular to normal nyq:
Nys' = Nog' (M)

Vs

o O O

Viewing and Projection

« Our eyes could collapse 3D world to 2D
Image (brain then reconstructs 3D)

 In computer graphics, we do It by projection

» two parts:

— viewing transformation: camera position
and orientation

— perspective/orthographicGEML/FRY):
reduces 3D to 2D

Orthographic Projection(1EAZ #%5%)

* When the focal point is at infinity, the
rays are parallel and orthogonal to the
Image plane

* No perspective effects

* When xy-plane Is the image
plane,

(X,y,Z) -2 (X1y’0) ,

A Simple Perspective Projection
(FEALA Y

* Focus point is at finite distance
* Perspective effects

 \When

— the camera is at the origin point
and looks along the z-axis

— The image plane is paraellel
to the xy-plane at distance d

— (X,y,2) = ((d/2)x, (d/z)y, d)

A Perspective Projection Matrix

* Projection using homogenous coordinates:
— Transform (x,y,z) -> ((d/z)x, (d/z)y,d)

ax| [d o 0 o [x
dy| =10 d 0 0| |y
dz 0 0 d 0]]|z
.z L0 0 1 07 (1.

— Divide by the 4-th coordinate (the “w”
coordinate)

Thanks!

