
Computer Graphics

Shi-Min Hu

Tsinghua University

Overview of Today

• Some important concepts in Graphics

– Color

– Image & Pixel (象素)

– Triangle Mesh

– Lighting & Shading （绘制）

• Transformation (变换) and Viewing

Color Perception

• What is Color?

– Colors are the sensations that arise from light

energy of different wavelengths

• electromagnetic waves (电磁波) with different

wavelengths are corresponding to different colors

• Human’s eye are sensitive

for electromagnetic wave

of wavelengths between 380

to 760 nm

Spectral Distribution of Light

• ―Light‖ is a mixture of many

wavelengths, each with

some intensity

– E.g., White Light means light

include all wavelengths with

the same intensity.

• spectral distribution:

intensity as a function of

wavelength over the entire

spectrum

• So, colors can be represented as such

distribution function

• However, use spectrum distribution for

color representation is too complicated, and

the corresponds is multiple-to-one.

• There exits a situation as ―different

spectrum distribution with the same

color‖ ‖(异谱同色)

RGB Color Space

• We first introduce color space for color

representation. RBG is commonly used

color space in Graphics

– Color is represented as RGB triple (r,g,b);

– People perform almost all operations on each

channel separately

– usually, each color value is a float value range

from 0 to 1, or 0-255 if we use 8 bit integers.

RGB Color Space

• Color are represented as combinations of

three primaries: red, green, blue)

– C = rR + gG + bB

– The reason why we pick red, green, and blue?

• essentially because of the structure

of our visual system

• Our visual system is sensitive to those three

colors

• A demo for Color

RGB Color Space

• Color are represented as combinations of

three primaries: red, green, blue)

– C = rR + gG + bB

– The reason why we pick red, green, and blue?

RGB Color Space

• Unfortunately ,Some

colors cannot be

written as

combinations of RGB

triples, because some

parts of the red curve

is negative

Other Color Spaces

• So some other color space are also used

– CMY

– HSV

– CIE XYZ

CMY

• CMY :The other set of primaries besides RGB

– Cyan(青), magenta（品红）, and yellow —

complements （补色）of red, green, blue

• It’s called subtractive primaries（减色系统）

– RGB are additive primaries — start with black, add up

to white

– CMY — start with white and subtract colors from white

HSV Color space

• True color pictures with 3 components (RGB),

each has 256 possible value, so we have up to

16,777,216 possible colors.

• Controlling this huge amount of possibilities is

almost impossible without the HSV space.

HSV provides an intuitive

method for color selection.

• Applications: image

processing, fractal

pictures, ray tracing…

HSV

• HSV: a color space in cone-shaped

– Hue (色调) means the base color, which is a main

factor indicates difference between colors.

– Saturation(饱和度) is for purity of color (decrease

= adding white)

– Value of brightness(亮度)

Luminance of lights,

(decrease = adding black

more user-friendly than RGB

CIE XYZ

• CIE XYZ color space

– Proposed by CIE (International Commission on

Illumination) in 1931

• It can represent all perceptible colors (while

RGB not)

– most used in color science

– based on human perception studies

CIE XYZ (Chromaticity Diagram)

This diagram shows how to use XYZ to

represent colors. Z is equal to 1 – x – y.

Image & Pixel

• Image

– image could be treated as a 2-dimensional

discrete function f(x,y)

– each discrete grid is called pixel (象素)

– Usually, each pixel has a RGB(or RGBA)

value for color image or

a scalar value for gray image

Triangle Mesh

• What’s objective of graphics?

– Given a 3D scene and a camera position, generate

(render) a 2D image.

– What is the data structure/representation of 3D

scene?

• For Simple primitives, such as sphere, cube…

• Complex models, usually use triangle mesh or

parameter curves/surfaces

• Mesh Description: usually contains a list of

faces F, and a list of vertices V

– A list of faces F = (f1,f2,…,fn)

• Each face is a triangle

– A list of vertices V = (v1,v2,…,vn)

– Each face in F is a list of indices in V

e.g.

f1 --(v1,v2,v3), f2 --(v4,v5,v6),

f3 --(v7,v8,v9), …

Some Samples

• Examples of triangle mesh models, a bull, a

dragon and a head model. We draw

triangles over bull model, and show the

other two models by shading.

• Face Normal

– Each face has a normal direction to define the orientation

• Vertex Normal

– Each vertex is shared by m faces

– Compute normal by Interpolation

Nv= (Nf1+Nf2 … + Nfm)/m

– or by area based Interpolation

Nv= (|F1|*Nf1+|F2|*Nf2 … + |Fm|*Nfm)/(|F1|+|F2|+…|Fm|)

Normal

Normal

Triangle Mesh

• Rendering of mesh models

– In each point of the mesh surface, we need to

specify a color

• By Color: Given constant color to each face

• By lighting

– Suppose a light exists in the scene and

illuminates the scene.

– How to calculate lighting?

Rendering results

• Wireframe

• Constant Color

• Lighting

Lighting model

• To calculate the intensity of light, we need

an lighting model (illumination model)

– Local Lighting

• Concerned with how objects are directly illuminated

by light sources

– Global Lighting

• Includes shadow effects

• Includes lighting effects from locations other than

light sources, such as reflections, refractions

History of Lighting

• In 1967, Wylie: first added lighting effects into

rendering

– Intensity is inverse of the distance to the light

• In 1970, Bouknight: introduced the first lighting

model:

– Lambert diffuse reflection(漫发射) + ambient (No

specular lighting)（环境光）

– Communication of ACM

• In 1971, Gourand: gourand shading

– Lambert diffuse + Bicentric interpolation

– IEEE transactions on Computers

• In 1975, Phong: proposed extended the model by

further considering specular:

– Diffuse（漫发射） + ambient（环境光） +

specular（高光）

– The most influenced lighting model

– Communication of ACM

Related Physics: The propagation of light

• The propagation of lights obeys law of reflection:

– the angle of incidence = the angle of reflection

– incoming ray, reflection ray and normal is in the

same plane

Normal

Incidence

Reflection

View

Light Source

• The law of refraction (also called Snell’s Law):

– the ratio of the sin of the angles of incidence and of

refraction is a constant that depends on the media

– The constant is called the relative refractive index

Energy

• Propagation of lights should satisfy Energy

conservation :

– Ii is the energy of incident light

– Id is the energy of diffuse reflection

– Is is the energy of specular reflection （镜面反射）

– It is the energy of refraction （折射）

– Iv is the energy that is absorbed

i d s t vI I I I I

Measure of light

• Solid Angle（立体角）:

– How big an object appears to

an observer at point P

– Max Value:

• Irradiance （辉度）E

– E defined as: light energy per unit time arrived

at per unit area

• Radiance （发光强度）I

– I defined as: irradiance per unit solid angle

P

d
dsd ds

P

2

ds
d

r

4

Phong Lighting Model

• Support point light or directional light

• Local lighting model

– Decompose lighting effects to 3 parts:

• Diffuse Reflection

• Specular Reflection

• Ambient lighting(to approximate the global

Illumination effects)

Phong Lighting Model Illustration

P

L N H
R

V

L is the incidence ray, V means the direction of the viewer, N is

the normal, and R is reflection of L; H is the half of L and V

Phong Lighting Model

• Diffuse reflection

– The propagation of diffuse reflection rays is isotropic.

– The intensity of diffuse reflection is defined as:

– is the diffuse reflection constant

– has three components represent

R,G,B diffuse reflection constant respectively.

implies the base color of the model

()d i dI I K L N

dK

dK , ,dr dg dbk k k

dK

Phong Lighting Model

• Specular reflection

– For glossy surfaces, the reflected rays always exist in a

very narrow solid angle area, determined by the direction

of reflection law

– The intensity of specular reflection is defined as:

– is the specular reflection constant ; and n is the

shininess constant, which decides how shiny the

surface is.

()n

s i sI I K R V

sK

Phong Lighting Model

• Ambient reflection

– To approximate global illuminations (including

indirect lighting, indirect reflection…)

– The intensity of ambient reflection is defined as:

– is the ambient reflection constant

a i aI I K

sK

Phong Lighting Model

• The reflection intensity is the sum of diffuse

reflection, specular reflection and ambient

reflection:

() ()n

i a i s i dI I K I K R V I K L N

Example 1

Diffuse Ambient

+

Specular

+

=

Example 2

Wu Jianhua’s Demo

Demo

http://cg.cs.tsinghua.edu.cn/course/

Phong Demo.exe
http://cg.cs.tsinghua.edu.cn/course/

Phong and Gouraud Shading

• Highlights on the surface are sometimes displayed

with anomalous（不规则） shape, and the linear

intensity interpolation can cause bright oe dark

intensity streaks called Mach Band

• Solution: Lighting or other parameters are

calculated in each vertex of the polygon, then in

each point inside the polygon, the intensity of

lighting is computed through bicentric interpolation

between the vertices.

• Two main algorithms

– Gouraud shading: interpolation of intensity,

– Phong shading: Interpolation of normal,

Gouraud shading

• Proposed by Gouraud in 1971

– Also called Gouraud interpolation

• Computation

– first calculate the color value of each vertex

– Interpolate the color values calculated at each

vertex

Phong shading

• Developed by Bui Tuong Phong in his 1973

PhD dissertation

– Note: it is different from Phong lighting model

• Computation

– Different from Gouraud shading, it does not

interpolate color values, it interpolate surface

normal, and use the interpolated normal to

calculate the color value.

Comparison

only by lighting model

by Phong shading

Transformation (变换) and

Viewing

• Why Transformation and Viewing

– Computer graphics renders high-quality

color images of a scene which is composed

of 3D geometric models.

– Transformations is extremely important in

graphics, With them, you can position,

reshape and animate objects, lights and

cameras

Why transformation: an example

• Suppose we already have a procedure to

draw a unit square [0,1]*[0,1]

• If you want to write another procedure to

draw a 2D rectangle with one corner at

(lox, loy) and another diagonal corner at

(hix, hiy).

One Solution

• Rewrite the drawing rectangle procedure

• Drawing a rectangle could be done like this, how

about drawing a complex model such as a teapot?

drawRect(lox, loy, hix, hiy) {

glBegin(GL_QUADS);

glVertex2f(lox, loy);

glVertex2f(hix, loy);

glVertex2f(hix, hiy);

glVertex2f(lox, hiy);

glEnd();

}

Solution using Transformation

• This is a solution you should use in almost

all graphics application for better speed,

modularity, flexibility, …

drawRect(lox, loy, hix, hiy) {

glTranslate(lox, loy);

glScale(hix-lox, hiy-loy);

drawUnitSquare(0,0,1,1);

}

What is a Transformation(变换)?

• A function that maps a point x to another

point x':

Applications: Morphing, deformation,

viewing, projection, real-time shadows, …

Simple Transformations

• Let’s see some intuitive transformation from left to

right:

– Identity(不变) , translation(平移), rotation(旋转) and

isotropic scaling(均衡缩放)

• Transformations can be combined together

– First rotate, then scale, then translate

• Transformations are invertible(可逆) operators

Transformation Classification(分类)

• Transformations could be classified into

these categories:

– Rigid-body Transformation (刚体变换)

– Similarity Transformation(相似变换)

– Linear Transformation(线性变换)

– Affine Transformation(仿射变换)

– Projective Transformation(投影变换)

Rigid-body Transformation

• Preserve distance, angle and size

• Include

– Identity

– translation

– Rotation

– and combinations of them
• Isotropic Scaling is not rigid body transformation

Similarity Transformation

• Preserve angle

• Include

– Identity

– Translation

– Rotation

– Isotropic Scaling
• not include general scaling

Linear Transformation

• Preserve linearity of addition and scalar

multiplication :

L(p+q) = L(p) + L(q) aL(p) = L(ap)

• Include

– Identity, Rotation, Scaling

– Reflection(对称), Shear(切变、剪切)
– Shear in the x direction, pull the top to the right and the bottom to the left

– But translation is not linear because of addition

Affine Transformation

• Preserve parallel lines

– If two lines are parallel before

transformation, they are still parallel after

transformation

• Include

– linear transformation

– similarity transformation

Projective Transformation

• preserves lines, produce projective visual effects

Translation
Rotation

Rigid
Linear

Affine

Projective

Similarity

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Transformation Representation

x' = ax + by + c (1)

y' = dx + ey + f (2)

x'

y'

a b

d e

c

f
=

x

y
+

p' = M p + t

• Take 2D as an example:

• Represent it in vector-matrix form:

p' = M p + t

• if representing p, p’ in homogenous coordinates

（齐次坐标）The formula is rewritten as:

• Need 2 variables for transformation: M and t

p' = M p

•What’s homogenous coordinates?

Homogeneous Coordinates(齐次坐标)

x'

y‘

1

a b

d e

0 0

c

f

1

=
x

y

1

p' = M p

x'

y'

a b

d e

c

f
=

x

y
+

p' = M p + t

Formulation in E^2 Homogeneous formulation

• The objective of HC is to use a 4D column matrices

to represent both points and vectors in 3D.

Homogeneous Coordinates(齐次坐标)

• Add an extra dimension
• in 2D, we use 3 x 3 matrices

• In 3D, we use 4 x 4 matrices

• Each point has an extra value, w

x'

y'

z'

w'

=

x

y

z

w

a

e

i

m

b

f

j

n

c

g

k

o

d

h

l

p

p' = M p

Homogeneous Coordinates

• Most of the time w = 1, and we can ignore it

• If we multiply a homogeneous coordinate

by an affine matrix, w is unchanged; by an

projective matrix, the value of w will change

x'

y'

z'

1

=

x

y

z

1

a

e

i

0

b

f

j

0

c

g

k

0

d

h

l

1

Homogeneous Visualization

• If w ≠1, can be divided by w to

normalize(归一化) (homogenize)

– So (2x,2y,2z,2) is equal to (x,y,z,1)

• w = 0?

– this case, the homogenous coordinate

represent a direction (方向) but not a

point.

Translate (tx, ty, tz)

• Why we introduce the

extra dimension?

Now translations can be

encoded in the matrix!

unified representation of transformation

x'

y'

z'

1

x'

y'

z'
=

x

y

z

1

1

0

0

0

0

1

0

0

0

0

1

0

tx

ty

tz

1

Translate(c,0,0)

y

x

p p'

c

Scale (sx, sy, sz)

• Scale

– For scaling, a fixed point (usually

origin) is unchanged by the transformation

– Such scaling matrix with a fixed point of origin

allows independent scaling along the coordinate

axes x'

y'

z'

1

=

x

y

z

1

sx

0

0

0

0

sy

0

0

0

0

sz

0

0

0

0

1

Scale(s,s,s)

x

p

p'

q
q'

y

Rotation

• There are 3 freedom corresponding

to our ability to rotate independently

about the three coordinate axes.

• About z axis

x'

y'

z'

1

=

x

y

z

1

cosθ

sinθ

0

0

-sinθ

cosθ

0

0

0

0

1

0

0

0

0

1

ZRotate(θ)

x

y

z

p

p'

θ

Demo

../../2007/cg2_2007/glut_demo.exe

Rotation

• About (kx, ky, kz), a unit

vector on an arbitrary axis

(Rodrigues Formula)

x'

y'

z'

1

=

x

y

z

1

kxkx(1-c)+c

kykx(1-c)+kzs

kzkx(1-c)-kys

0

0

0

0

1

kzkx(1-c)-kzs

kzkx(1-c)+c

kzkx(1-c)-kxs

0

kxkz(1-c)+kys

kykz(1-c)-kxs

kzkz(1-c)+c

0

where c = cosθ & s = sinθ

Rotate(k, θ)

x

y

z

θ

k

Transformation Combination(合并)

(0,0)

(1,1)
(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS =

2

0

0

2

0

0

1

0

0

1

3

1

2

0

0

2

3

1=

An Example: Scale then Translate

Use matrix multiplication: p' = T (S p) = TS p

Notice: matrix multiplication is inverse

0 0 1 0 0 1 0 0 1

Non commutative(交换) Composition

Scale then Translate: p' = T (S p) = TS p

Translate then Scale: p' = S (T p) = ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)

(1,1)
(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

Non-commutative Composition

TS =
2

0

0

0

2

0

0

0

1

1

0

0

0

1

0

3

1

1

ST =
2

0

0

2

0

0

1

0

0

1

3

1

Scale then Translate: p' = T (S p) = TS p
2

0

0

0

2

0

3

1

1

2

0

0

2

6

2

=

=

Translate then Scale: p' = S (T p) = ST p

0 0 1 0 0 1 0 0 1

The reason is because matrix multiplication is non-

commutative TS ≠ ST

Transformation of Normals(法向)

• Surface Normal: unit vector that is locally

perpendicular to the surface

• One of the most important geometric

property of surfaces

Why is the Normal important?

• It's used for shading — makes things look

3D!

• All kinds of lighting models utilized surface

normal in the lighting computation

object color only Diffuse Shading

Transform Normal like Object?

• Could we transform the

normal like objects?

• We could find that

translation, rotation and

isotropic scale preserve the

correct normal.

• But shear does not (the right

bottom image.)

Transform Normal like Object?

• Another example

– We scale an sphere

(but not isotropic

scale).

– The transformed

normal is also

incorrect.

Transformation for shear and scale

Incorrect

Normal

Transformation

Correct

Normal

Transformation

how could we transform normal correctly?

• transforming the tangent plane (切平面) to

the normal, not the normal vector directly

How to transform normal?

Original Incorrect Correct

nOS

Pick any vector vOS in the tangent plane to

transform

vOS
vWS

nWS

vWS = M vOS

Transform tangent vector v

v is perpendicular to normal n:

nOS
T vOS = 0

nOS
T (M-1 M) vOS = 0

nWS
T = nOS

T (M-1)

(nOS
T M-1) (M vOS) = 0

(nOS
T M-1) vWS = 0

The matrix is the transpose of inverse of M

vWS is perpendicular to normal nWS:

nWS = (M-1)T nOS

nOS

vWS

nWS

vOS

Dot product

Viewing and Projection

• Our eyes could collapse 3D world to 2D

image (brain then reconstructs 3D)

• In computer graphics, we do it by projection

• two parts:

– viewing transformation: camera position

and orientation

– perspective/orthographic(透视/投影):

reduces 3D to 2D

Orthographic Projection(正交投影)

• When the focal point is at infinity, the

rays are parallel and orthogonal to the

image plane

• No perspective effects

• When xy-plane is the image

plane,

(x,y,z) -> (x,y,0) ,

orthographic projection

A Simple Perspective Projection

(透视投影)

• Focus point is at finite distance

• Perspective effects

• When

– the camera is at the origin point

and looks along the z-axis

– The image plane is paraellel

to the xy-plane at distance d

– (x,y,z) ((d/z)x, (d/z)y, d)

A Perspective Projection Matrix

• Projection using homogenous coordinates:

– Transform (x,y,z) -> ((d/z)x, (d/z)y,d)

– Divide by the 4-th coordinate (the “w”
coordinate)

dx

dy

dz

z

=

x

y

z

1

d

0

0

0

0

d

0

0

0

0

d

1

0

0

0

0

Thanks!

