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Abstract

This paper presents a novel approximation technique that handles object rotation and trans-
lation in all-frequency rendering of dynamic scenes. The method can also handle arbitrary
isotropic/anisotropic BRDFs, allowing on-the-fly BRDF swapping or editing. The main chal-
lenge is in the efficient approximation of the costly rendering integral between light, BRDF
and visibility. We decompose the environment map, which is the integral domain, into several
subregions (20-40 is sufficient for producing compelling results) so that the rendering integral
over the environment map equals the sum of integrals over individual subregions. We introduce
a multi-product approximation that approximates the rendering integral in each subregion by
the product of separate integrals of light, BRDF and visibility. To fast compute the BRDF in-
tegral and visibility integral, we propose a new representation, rotatable square light (RSL), to
represent each subregion. Based on the RSL representation, the BRDF and visibility integrals
can be approximated quickly using Summed-Area Table (SAT) and Visibility Distance Table
(VDT), respectively. Our algorithm can be implemented on current GPU and interactive frame
rates can be achieved.

1 Introduction

Fast all-frequency rendering from environment maps is a challenging problem. There has been
extensive research addressing this problem in recent years. All-frequency methods [7, 9, 10, 13, 14],
based on nonlinear wavelet approximation, have been successfully used to render scenes with realistic
shading and shadow effects in all-frequency bands. However, since wavelet basis cannot be easily
rotated, [7, 9, 10, 13] have to reproject the environment to wavelet basis in every frame whenever
the environment map is rotated, which may cause flickers between frames. The non-rotatability of
wavelet also limits the method of Zhou et al. [14] to handle only non-rotating objects of dynamic
scenes in all-frequency bands.

To address the limitations caused by non-rotatability of wavelet in all-frequency rendering, we propose
a novel approximation method of all-frequency environment lighting. For rendering with environment
lighting, the shaded ”response” at each vertex of the object is computed by a rendering integral, which
integrates three factors, light, BRDF and visibility. Our idea is inspired by this observation: a multi-
product integral in a small region can be well approximated with bounded error by the following
equation: ∫

S

f(x)g(x)h(x) ≈ |S| ·
∫

S
f(x)

|S| ·
∫

S
g(x)

|S| ·
∫

S
h(x)

|S| (1)

Thus, we first decompose the environment map into several subregions, which are guaranteed to be of

1



small sizes or have small energy. The rendering integral in each subregion can then be approximated
by the product of separate integrals of light, BRDF and visibility (Equation 1). The integral of light
in the subregion is precomputed during the decomposition of environment map. To fast approximate
the integrals of the other two factors, we approximate their common integral domain—a subregion in
the environment map—with a rotatable square light (RSL). With each RSL, we utilize Summed-Area
Table (SAT) and Visibility Distance Table (VDT) to fast approximate the BRDF integral and the
visibility integral, respectively. Instead of approximating the subregions with RSLs in the local frame
of object vertex in every frame, we decompose the environment map into subregions and approximate
the subregions with RSLs once globally before rendering.

By approximating the rendering integrals in individual subregions with the product of separate
integrals, which can be fast approximated, our method can handle all-frequency rendering of static
scenes. By adopting the shadow field framework in [14], our method can easily handle dynamic scene
rendering and local light sources.

Compared with previous methods, our method make possible several new effects. First, since the
integral domain RSL can be easily rotated, we can easily handle all-frequency rendering under en-
vironment map rotation and objects rotation in dynamic scenes. Furthermore, our BRDF data is
stored separately from objects. This object-separated BRDF representation enables us to easily swap
an object’s BRDF during rendering or perform on-the-fly BRDF editing. In contrast, in previous
all-frequency PRT methods, the BRDF is combined with the object, making it difficult to be edited
for scene design.

Our rendering algorithm can be implemented on current graphics hardware, achieving interactive
frame rates.

In summary, our main contributions consist of:

• A novel method to approximate multi-product of rendering equation, which enables all-frequency
rendering of environment lighting in interactive frame rates through a hardware program.

• Fast all-frequency rendering of dynamic scenes with both object rotation and translation.

• On-the-fly BRDF swapping and editing made possible by our object-separated BRDF repre-
sentation.
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2 Related Work

Environment lighting of static scenes: Sloan et al. [12] introduced a precomputed radiance
transfer (PRT) framework for environment lighting. Their method is successful for rendering from
low frequency environment maps. They represent the global environment map and the transport
function at each vertex in spherical harmonic (SH) basis, which reduces the rendering computation
at each vertex to a simple dot product. Ng et al. [9] extended their work to all-frequency bands .
Instead of SH, they use nonlinear wavelet basis to represent the environment light and the transport
function at each vertex. However, their method is limited to only diffuse objects and glossy objects
of fixed views.

Ng et al. [10] subsequently overcome the limitation in their previous work by treating the render-
ing equation as a triple product of light, view and BRDF factors. They analyze the computation
complexity of the triple product, and use the Haar wavelet basis to render realistic images in a few
seconds. Based on [9], Liu et al. [7] and Wang et al. [13] factorize BRDF into separate view and
light dependent parts, thus they can handle glossy objects in PRT framework with changing views.
Liu et al. [7] also applied CPCA to accelerate the rendering and achieve interactive performance.
All these methods are wavelet-based, which share a common drawback in that, unlike SH, wavelets
representation cannot be easily rotated. In every frame when the environment map rotates, the envi-
ronment map has to be reprojected to the wavelet representation, which may cause flickers between
frames. Another drawback is that, as BRDF is stored in the global frame, it limits the free changing
or editing of materials for scene design.

Environment lighting of dynamic scenes: Dynamic scene rendering with PRT is a hard problem
because, when objects move, the precomputed light transport function is no longer valid. Mei et
al. [8] efficiently rendered shadows of dynamic scenes using precomputed visibility information for
each object with respect to uniformly sampled directions. However, their method cannot handle local
light sources. Zhou et al. [14] introduced a shadow field framework for rendering dynamic scenes
with local light sources. They precompute the shadowing effects, in SH/wavelet basis, at the sample
points of each occluder’s surrounding space. Each local light’s irradiance map is precomputed in a
similar way. However, their method cannot handle rotating objects in all frequency bands because
the wavelet representation cannot be easily rotated.

Summed-Area Table (SAT): Crow [3] introduced the summed-area table for rapid box filtering
(averaging) during texture mapping. Its usage was later extended to volume rendering, image, video
processing and so on [5]. As illustrated in Figure 1, by pre-integrating the top-left area of each
sample point, the integral in a rectangle area can be rapidly computed with four look-ups:∫

R

f(x, y)dxdy = SAT (r, b) − SAT (l, b) − SAT (r, t) + SAT (l, t) (2)

Precision problem occurs when SAT is implemented in graphics hardware; the problem can be alle-
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Figure 1: SAT definition and usage. The integral of the rectangle R defined by (l, r, t, b) can be fast
computed using four lookups.

viated with techniques in [5].

The remainder of this paper is organized as follows. We outline our rendering framework in Section 3
and describe the algorithm details in Section 4. After presenting the implementation details in
Section 5, we analyze the rendering error of our method in Section 6. Results are given in Section 7,
and conclusion and future work in Section 8.

3 Rendering Framework

The rendering equation for environment map illumination of dynamic scenes is:

B(x, ω0) =

∫
S

L(x,ω)ρ(x, ω, ω0)V (x, ω)
∏

j

VOj
(x, ω)dω (3)

where x is a vertex of a target object, ω and ω0 are the light and view directions respectively, L
is the illumination environment map, V is the self-visibility function of vertex x, VOj

(x, ω) is the
visibility function of an opaque object j at location x, and ρ is the 4D reflection function at location
x incorporated with the cosine term ω · n.

By decomposing the integral domain into a set of subregions Si, the rendering equation becomes

B(x, ω0) =
∑

i

∫
Si

L(x,ω)ρ(x, ω, ω0)V (x, ω)
∏

j

VOj
(x, ω)dω (4)

With the assumption that each subregion is of small size or has small energy, we approximate the
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Figure 2: Multi-product approximation. We approximate the integral of the product of light, BRDF
and visibility in a subregion by the product of light integral, BRDF integral and visibility integral,
as in Equation 5.

render integral in each subregion Si by the product of separate integrals (see Figure 2)

∫
Si

L(x, ω)ρ(x, ω, ω0)V (x, ω)
∏

j

VOj
(x, ω)dω

≈
∫

Si

L(x, ω)dω ·
∫

Si
ρ(x, ω, ω0)dω

|Si| ·
∫

Si
V (x, ω)dω

|Si| ·
∏

j

∫
Si

VOj
(x, ω)dω

|Si| (5)

We give an overview of our rendering framework here. The details are explained in the next section.
We first globally decompose the environment map into several subregions of arbitrary shapes and
approximate each subregion by a rotatable area light of square shape. Specifically, we approximate
a subregion Si by an RSL 〈�ci, ri, Ii〉, where �ci is the 3D direction vector indexing the center pixel of
the square, ri is half of the diagonal, and Ii is the average light intensity (Figure 4, more details in
next section). Given a desired number of RSLs (which is application dependent), we decompose the
environment map by minimizing the sum of the fitting errors between the RSLs and the subregions.

After the light decomposition, the rendering computation is done per-vertex. At each vertex, the
rendering integral of the environment map is the sum of the rendering integrals of all the subregions.
To approximate the rendering integral in each subregion Si using Equation 5, we need to calculate
the light integral, the BRDF integral and the visibility integrals.

The light integral
∫

Si
L(x, ω)dω is directly determined as 2r2

i Ii from the RSL representation. The
BRDF integral and the visibility integrals are calculated at runtime in the vertices’ local spaces,
utilizing a local frame parametrization method that maps a hemisphere to a 2D plane. Figure 3
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Figure 3: Subregion rotation and projection. A subregion Si is first rotated from the global frame
(left) to the local frame of a vertex x to obtain S ′

i (middle), then projected to the 2D parametrization
plane (right).

illustrates this process. Suppose we want to integrate over a subregion Si represented by an RSL
〈�ci, ri, Ii〉. We first rotate Si to the local frame of a vertex x to obtain a subregion S ′

i with RSL

representation 〈�c′i, ri, Ii〉, where �c′i is the rotated �ci. Next, we project S ′
i to the 2D parametrization

plane to get a subdomain Ciand approximate it by a square Ri with center pi (corresponding to �c′i)
and edge length

√
2ri. Then the integral over Si in the global frame is equal to the integral over

Ci in the parametrization domain. An integral over Ci can be approximated by an integral over Ri.
Taking BRDF as an example (with ω′

0 denoting the view direction ω0 rotated to the local frame), we
have:

1

|Si|
∫

Si

ρ(x, ω, ω0)dω =
1

|Ci|
∫

Ci

ρ(p, ω′
0)dp ≈ 1

|R|
∫

R

ρ(p, ω′
0)dp (6)

With this approximation, we fast calculate the BRDF integral using the Summed-Area Table (SAT)
method. For the visibility integrals, due to visibility being binary values, instead of using the SAT,
we introduce the Visibility Distance Table (VDT) for fast integration.

4 Rendering Algorithm

This section describes the details of our algorithm. Section 4.1 describes how an environment map is
globally decomposed into subregions and approximated by RSLs. Sections 4.2 and 4.3 explain how
the BRDF integral and the visibility integrals are fast approximated for rendering with each RSL.

4.1 Light Approximation

We approximate environment lighting by decomposing the environment map subregions using a
bottom-up merging strategy, with each subregion approximated by a rotatable square light (RSL).
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Figure 4: RSL fitting of subregion Si of arbitrary shape.

To reduce the fitting error, the decomposition process optimizes an energy function defined in terms
of the RSL fitting errors.

We first explain how to fit a given subregion Si with an RSL, and then present how we optimize the
RSL fitting error during the environment map decomposition.

4.1.1 Rotatable Square Light (RSL) and RSL Fitting

RSL is a rotatable square light of uniform intensity that best fits a subregion Si in the environment
map. It is defined as 〈�c, r, I〉, where �c is the center direction (3D) of Si, r is half of the diagonal, and
I is the average light intensity (see Figure 4). The fitted RSL can be rotated about its center by any
angle θ. The region covered by all possible rotated RSLs forms a circle Or of radius r.

Fitting a subregion Si with a RSL is an optimization procedure. We define an extended subregion
S ′

i = Si ∪ Or. Suppose the light function of Si is L(x), we define the target light function T (x) and
the fitted light function F (x, θ) in S ′

i as

T (x) =

{
L(x) x ∈ Si

0 x /∈ Si
; F (x, θ) =

{
I x ∈ Or(θ)
0 x /∈ Or(θ)

where Or(θ) is the true region occupied by the RSL rotated by angle θ. The fitting error, η2
i (θ),

which is the optimization function of the RSL fitting, is computed as

η2
i (θ) =

∫
S′

i

(T (x) − F (x, θ))2dx
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The fitting error can be evaluated at all θ. By minimizing the average of these errors, denoted
E(η2

i (θ)), the RSL parameters 〈�c, r, I〉 can be determined.

So far, we have only considered light approximation error in RSL fitting. As the rendering error is
the ultimate concern, we should also consider the effect of RSL fitting on rendering error. From our
mathematical error analysis of the multi-product approximation equation (Equation 5) explained in
Section 6, we found that the variance of BRDF and the variance of visibility both influence the error
bound of the rendering computation using RSLs. In fact, Agarval et al. [2] prove that, for visibility
variance, E(σ2

v) ∝ √
S. Similarly, we experimentally find that, for BRDF variance, E(σ2

ρ) ∝ √
S.

Therefore, we add an area penalty term into the objective optimization equation of RSL fitting:

min{|S ′
i|E(

∫
S′

i

(T (x) − F (x, θ))2dx )}. (7)

To reduce the search space of RSL fitting, we only optimize �c and r. The intensity I can be directly
derived from I =

∫
Si

L(x)dx/2r2, which preserves the energy of the subregion. Due to the symmetry
of squares, θ only needs to be evaluated in [0, π/2]. In our experiments, we optimize θ over 0, π/8,
π/4 and 3π/8.

Using the optimization function in Equation 7, we can solve for the parameters of RSL. The fitting
error is used to guide the environment map decomposition, which is described in the next subsection.

4.1.2 Light Decomposition

We decompose the light environment into several subregions by optimizing the sum of the fitting
errors by RSLs. This is solved by iteratively merging subregions. At the beginning, we have each
pixel in the environment map as a subregion, with a total of 6× 32× 32 subregions usually. In each
subsequent iteration, we select two subregions and merge them into one subregion. For simplicity,
we always select two connected subregions that are in the same face. The criteria of selection is
that the merged subregion has the least RSL fitting error among all the candidate subregion pairs in
the current iteration. Thus, the number of subregions always decreases by one after each iteration.
After thousands of steps, we will obtain a specified count of subregions. This procedure takes about
2 minutes. The pseudo code is shown in Figure 5.

Figure 6 shows two examples of light approximation using RSLs, for high- and low- frequency envi-
ronment maps. The middle column shows the resulting subregions, and the right column shows the
approximated RSLs for the subregions. In our experiments, we found that 20 ∼ 40 RSLs are enough
to give compelling rendering results for most kinds of environment maps.
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Initialize the subregion set        ;
error array error[m];
index array index[m];

While (m>1)
For i=0 to m

Try to merge  with neighbor subregions, 
and compute RSL fitting errors;
Record min error in error[i] and neighbor’s 
index in index[i];
If no neighbor, error[i] =    , index[i] = -1;

End For
Find subregion    with minimum fitting error error[j];
If (index[j] == -1) break;
Merge  and to obtain a new subregion s;
set = s;

=        ;
m--;

End While

{ | 0 }
i

S s i m= ≤ <

i
s

∞

j
s

j
s

j
s

[ ]index j
s

[ ]index j
s

1m
s −

Figure 5: Pseudo code of light decomposition.

Figure 6: Light approximation using RSLs. Left column shows the original environment maps;
middle shows the subregions bounded by green lines; right shows the fitted RSLs. Top and bottom
rows illustrate the results for high- and low- frequency light environments respectively.
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4.2 BRDF Integral

As described in the framework section, with Equation 6, the BRDF integral in a subregion Si is
approximated by an BRDF integral over a square R in the 2D parametrization plane:

1

|Si|
∫

Si

ρ(ω, ω0)dω ≈ 1

|R|
∫

R

ρ(p, ω′
0)dp (8)

We pre-integrate a BRDF function into an SAT, then a BRDF integral over any rectangle can be fast
computed using only four lookups of the SAT. Thus, we perform the BRDF integral computation
in two steps: precomputation step and rendering step. In the precomputation step, for each view
direction ω0, we pre-integrate the SAT of the BRDF function of p (correspond to light direction ω) as
I(p, ω0) =

∫
C

ρ(p, ω0)dp. Then, in the rendering step, the integral over the square R is fast calculated
by four SAT look-ups; interpolation is done for intermediate view directions.

For an anisotropic BRDF, we have to tabulate the view direction ω0 over the whole hemisphere
which is 2D, therefore the whole BRDF SAT dataset is 4D. For an isotropic BRDF, we only need to
tabulate the polar angle of the view direction ω0, therefore the whole BRDF SAT dataset is 3D.

Because the BRDF integral is independent of the models and vertices, several benefits can be derived.
Firstly, we can on-the-fly swap or edit the BRDF of a model. For analytic BRDFs, given the new
parameters, the BRDF SAT data (a 3D/4D table) can be regenerated on the fly, achieving interactive
editing of BRDF. Secondly, we only need to store a 3D/4D dataset for an isotropic/anisotropic BRDF.
In contrast, previous methods like [10] define their BRDF in the global frame, requiring 6D BRDF
data storage. Thirdly, local deformable shading effects can be easily handled. Our method can
handle deformable shading as the BRDF integral is computed in local frame; visibility integrals can
be ignored for local shading.

4.3 Visibility Integral

Similar to the BRDF integral, intuitively, visibility integrals can be fast approximated using SATs.
However, because visibility data are binary values, we propose a new method called Visibility Dis-
tance Table (VDT), which is more efficient for visibility integral approximation and visibility data
compression than the SAT.

As shown in Figure 7, given a 2D visibility map v(p), which is a function of point p in the hemisphere
parametrization domain, the VDT is defined as D(p) = d(p) ∗ sign(p), where d(p) is the nearest
distance from point p to the binary-change boundary of v(p), and sign(p) = 1 if v(p) = 1, otherwise
sign(p) = −1. We use the method described in [4] to generate a visibility distance table from the
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Figure 7: Visibility Distance Table (VDT) definition. Left is a visibility map, right is the corre-
sponding Visibility Distance Table. The distance is normalized.

given visibility map. The integral of v(p) over the square R (center p, half diagonal r) can be simply
approximated as

1

|R|
∫

R

v(p)dp ≈ min(1, max(0, F (p)) (9)

where F (p) =

√
2

2
r+D(p)√

2r
approximates the percentage of points with value 1 in the integral square.

VDT has several advantages. First, only one look-up is needed for visibility integral approximation,
which is four times faster than looking up SAT; secondly, unlike SAT, VDT has no precision problem
in graphics hardware; thirdly, VDT is a continuous signal, which is more suitable for compression
while giving fewer artifacts.

Using VDT to look up an integral is only accurate when the visibility boundary is a straight line.
Nevertheless, our experiments show that results are acceptable in most cases. There is a tradeoff
between performance and accuracy when choosing VDT or SAT.

4.3.1 Self Visibility

As described in Section 3, self-visibility integral in a subregion Si can be approximated by an integral
over the square R in the 2D parametrization plane:

1

|Si|
∫

Si

V (x, ω)dω ≈ 1

|R|
∫

R

V (x, p)dp (10)

The integral can be fast approximated using VDT in two steps: pre-computation step and rendering
step. In the pre-computation, we ray-trace to compute the visibility map V (x, p) at each vertex x in
its local frame, and generate the corresponding Visibility Distance Table D(x, p). We call all these
maps at vertex x collectively as the Self-Visibility Distance Field (SVDF). Then, during rendering,
for each subregion Si, the integral is approximated by Equation 10 with a square R. With the
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center and the half-diagonal of R, we further approximate the integral using a VDT according to
Equation 9.

4.3.2 Occluder Visibility

Similar to self-visibility integral, the occluder visibility integral is also approximated by integrating
over a square R in the 2D parametrization plane:

∏
i

1

|Si|
∫

Si

VOi
(x, ω)dω ≈

∏
i

1

|Ri|
∫

Ri

VOi
(x, p)dp (11)

Here we adopt the shadow field framework of [14], and again approximate the integral in two steps.
For the pre-computation step, we adopt the sampling method of object occlusion field (OOF) from
[14], which stores a 2D visibility data for each sample point in the 3D surrounding space of the
object. However, our pre-computation step differ from theirs in two aspects. First, at each sampled
point q around an object O, we capture the visibility map only on the hemisphere defined by the
direction from q to the center of O, rather than the visibility map in the global frame. Second, we
store a VDT instead of a visibility map at each sampled point. The VDTs at all sampled points
are collectively referred to as the Occluder Visibility Distance Field (OVDF). In the rendering step,
as [14], we approximate each occluder integral on the VDTs of the sample points using Equation 9;
the VDT at an intermediate point is approximated by a trilinear interpolation of the eight nearest
samples.

5 Implementation

We have implemented our rendering algorithm on graphics hardware. This section presents the
implementation details, including hemisphere parametrization, data compression and the shader
program in GPU.

We use a hemisphere parametrization that maps from a unit hemisphere to a unit disk: define
p(θ, φ) : [0, π

2
] × [0, 2π] → [−1, 1] × [−1, 1] as

p =
sin θ√

1 + cos θ
(sin φ, cos φ).

We have also tested cube map parametrization and the hemisphere parametrization in [6], but we
find that our parametrization gives the least distortion. Cube map is not a uniform parametrization,
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and the size of a region changes when it is projected from a sphere to a cube map, leading to noises.
The hemisphere parametrization in [6] produces artifacts when a region crosses the diagonal of the
unit disk.

5.1 Data Compression

Let ω0 and ω denote the view and light directions respectively, and let θ0 denote the polar angle of the
view direction. For an isotropic BRDF ρ(ω, θ0), ω is sampled at 32*32 directions of the hemisphere
parametrization, and θ0 is sampled at 32 angles. For an anisotropic BRDF ρ(ω, ω0), both ω and ω0

are sampled at 32*32 directions. We do not do compression for BRDF data.

The 4D Self-Visibility Distance Field (SVDF) is precomputed with a sampling rate of 32*32*N ,
where 32*32 is the size of the VDT at each vertex, and N is the vertex count. The 5D Occluder
Visibility Distance Field (OVDF) is precomputed at 32*32*(6*32*32)*16, where 32*32 is the VDT
size, (6*32*32)*16 because, like OOF in [14], we use a cube sampling of 6*32*32 to sample the space
around each object on 16 different concentric spheres, with radii ranging from 0.4r to 6r, where r
is the radius of the bounding sphere. As a result, the data of the SVDF for a 40k vertex mesh is
about 160M (32FP), and the data of the OVDF is about 384M. Both of them need to be compressed
before putting into the GPU.

For SVDF compression, we use the clustered PCA (CPCA) method. Take a 40k vertex model for
example, with 256 clusters and 8 eigen-vectors for each cluster, a compression ratio of about 1:17(9M)
gives a good result.

We compress OVDF as follows. For each concentric sampling sphere (using cube map sampling), we
split all the six faces of the cube map into 2*2 segments, and obtain 24 segments on each sphere,
like in [7]. We use 16 concentric sampling spheres, resulting in a total of 24*16=384 segments. Each
segment is compressed using PCA. With 8 eigen-vectors per segment, a compression ratio of about
1:26(15M) gives a good result.

We pack BRDF, SVDM and OVDF data into textures to load into the GPU. For higher accuracy,
we use 16FP textures instead of 8BP. For BRDFs, we pack both isotropic and anisotropic BRDFs
into 3D textures. For the compressed SVDF and OVDF, we pack the eigen-values and the cluster
indices of the vertices into 2D textures. Eigen-vectors of SVDF and OVDF are packed into 2D and
3D textures, respectively.

We use one more texture to store all the RSLs, which are updated after rotation of the scene in each
frame.
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For each vertex p
Initialize color Bp = 0;
For each RSL <c,s,I>

Project light dir c to p's local frame, get c';

Project view dir v to p's local frame, get v';

lookup SVDF with (c', s), get integral Vs;

lookup BRDF SAT with (c',s,v'), get integral Vq;

T = I*Vs*Vq/s;

For each occluder J
Project c to the local frame of sample point 
p of occluder J(oriented to J’s center), get c'';

Lookup J's OVDF with (c'',s,p), get integral Voj;

T *= Voj /s;

End for 
Bp += T;

End For
End For

Figure 8: Pseudo code of pixel shading program.

5.2 Shader program in GPU

Our algorithm is a per-vertex rendering method, however we utilize the render-to-vertex-array tech-
nique and perform the rendering in two steps. In the first step, we pack the object vertices into a 2D
rectangle, with one vertex on the object corresponding to one pixel in the rectangle, and use a pixel
shader program to calculate the color for each pixel. The color is copied from the frame buffer to the
vertex array using OpenGL extension pixel buffer object (PBO). In this step, the vertex attributes
are needed for color calculation for each vertex, so we pack the position, normal and tangent direction
of the vertices into a 2D texture. In the second step, we use the OpenGL extension vertex buffer
object (VBO) to render the scene with the color calculated in the first step. The pseudo code of pixel
shader is shown in Figure 8.

In the shader program, several textures are looked up for each vertex, such as attribute texture, BRDF
texture, eigen-value, cluster index and eigen-vector textures of SVDF and OVDF. As a result, texture
fetching is the bottleneck. We use occluder culling to accelerate it. To do this, we use multi-pass
rendering in the first step, with one pass for each light (RSL). The resulting images of each pass are
blended together to generate a final image. Then, before each pass, we determine the occluders that
can be neglected in that pass using CPU, and only send the remaining occluders to GPU.

6 Error Analysis

There are two main approximations in our method. One is the multi-product approximation, which
approximates the rendering integral with a product of separate integrals. The other is the approxi-
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mation of the separate integrals of BRDF and visibility. We will analyze the errors brought about
by these two approximations in 6.1 and 6.2, and compare our results with ground truth and with
the results of Ng et al. [10] in 6.3.

6.1 Error of Multi-product Approximation

We first give an error bound of the multi-product approximation mathematically. Given a function
f defined on a region S, denote the expectation uf , the variance σ2

f and the 3rd central moment m3
f

of function f as: uf = 1
|S|

∫
S

f(ω)dω, σ2
f = 1

|S|
∫

S
(f(ω) − uf)

2dω, and m3
f = 1

|S|
∫

S
(f(ω) − uf)

3dω.

Denote V ′(x, ω) = V (x, ω)
∏
j

VOj
(x, ω) in Equation 5, we can rewrite Equation 5 as

∫
Si

L(x, ω)V ′(x, ω)ρ(x, ω, ωo)dω ≈ |Si|uLuV ′uρ (12)

The error of Equation 5 is then bounded by

∣∣∣∫Si
L(x, ω)V ′(x, ω)ρ(x, ω, ωo)dω − |Si| uLuV ′uρ

∣∣∣
≤ |Si| (uLσV ′σρ + uV ′σρσL + uρσLσV ′ + mLmV ′mρ)

(13)

This can be mathematically proved using Hölder’s Sum Inequality [1].(To reviewer: if permitted, we
can provide the proof.)

From this equation, we could know that the error of the multi-product approximation is bounded
by the intensity and variance of light, BRDF and visibility. Light variance is already considered
in RSL fitting and is minimized in light decomposition in Section 4. From [2], we know that the
average variance of visibility E(σ2

v) ∝
√

S, also we experimentally find that the average variance of
BRDF E(σ2

ρ) ∝ √
S. Since we add the region size as a penalty in RSL fitting during environment

map decomposition, this strategy guarantees that the sizes of regions with high light intensity will be
small, so the average variance of visiblity and BRDF will be small, tending to minimize the overall
bounding error.

6.2 Error of Separate Integrals

In order to fast compute BRDF and visibility integrals, we use a square R in parametrization plane
to approximate the projected subregion C. The mismatch between R and C leads to error in the
separate integrals. The error is determined by two terms: one is the mismatch area percentage
between R and C, the other is the variance of BRDF or visibility in the region. The integral error
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Reference Image

W(20): 1.59% L 2

RSL(10): 0.72% L 2

W(30): 1.37% L 2 W(60): 1.01% L 2

RSL(100): 0.07% L 2RSL(60): 0.11% L 2RSL(30): 0.35% L 2

W(100): 0.64% L 2

Figure 9: Rendering of a buddha scene in Kitchen. Please notice the difference of the shadow
boundaries.

will be small if either term is small. To give a better insight, consider rotating and projecting a
subregion that is only a pixel to the parametrization plane. The mismatch percentage may still be as
large as 10%-20%, but the error would be nearly zero, because the variance of BRDF and visibility
in a small area is nearly zero.

The RSL fitting equation has already taken the mismatch percentage into consideration. In addition,
since our light decomposition strategy guarantees that the sizes of regions with high light intensity
are small, we can conclude that the average variance of BRDF and visibility is small for a high light
intensity region.

6.3 Error in Rendered Images

In Figure 9 and 10, we compare our results with the ground truth (obtained by ray tracing) and
the results of the area-weighted wavelet method [9] for both low- and high-frequency environment
maps. 10, 30, 60, 100 RSLs are used in our method, and 20, 30, 60, 100 wavelet terms(each channel)
are used for the wavelet method [9]. L2 error are measured for both methods. From the figures, we
can see that the rendering error of our method under all-frequency environment lighting is small.
Results with 100 RSLs are almost accurate as ground truth; with 30 RSLs, the accuracy is as that
of wavelets with 100 terms. Our method is more accurate than wavelet methods because RSLs can
better approximate the environment light. RSL is flexible and can freely fit high intensity regions,
while wavelet basis has to be aligned to the quad-tree of faces of cube map and cannot freely fit the
high intensity regions.
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Reference Image

W(20): 1.17% L 2

RSL(10): 0.79% L 2

W(30): 0.82% L 2 W(60): 0.36% L 2

RSL(100): 0.02% L 2RSL(60): 0.03% L 2RSL(30): 0.49% L 2

W(100): 0.28% L 2

Figure 10: Rendering of a teapot scene in Grace Cathedral. Please notice the difference of the glossy
slope and the shadow boundaries.

Scene Vertices FPS Num. of RSLs
Robot 60k 10.8 30
Kitchen 80k 9.9 30
Buddha (static scene) 45k 27 30

Table 1: Result performance.

7 Results

The performance of different scenes is shown in Table 1. We apply occluder culling to dynamic scenes.
The performance is reported on a Pentium IV 3.2GHz PC with a Nvidia GeForce 7800GT 256MB
graphics card. Interactive frame rates are achieved for large dynamic scenes under all-frequency
environment lighting, and realtime frame rates are achieved for static scenes under all-frequency
environment lighting, which is much faster than previous methods.

Figure 11 compares the result of SVDF under different levels of compression. Figure 12 compares the
result of OVDF under different levels of compression. Figure 13 and 14 show some rendering results
of the robot scene and the kitchen scene. Figure 15 shows rendering results of different BRDFs; we
use the BRDFs from [11]. Figure 16 shows results of local light illumination and local deformable
shading.
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8 Conclusion and Future Work

We have proposed a new approximation method for fast all-frequency rendering. Our method can
handle both object rotation and translation of dynamic scenes in all-frequency environment lighting,
and it enables on-the-fly BRDF editing and swapping. Furthermore, it can be used in applications
of local light illumination and local deformable shading.

By first decomposing the whole environment light to a few subregions represented by RSLs, the whole
rendering integral can be approximated by the sum of products of separate integrals that integrate
light, BRDF and visibility respectively. In individual subregions represented with RSLs, BRDF
integral can be fast approximated by SAT and visibility integral can be fast approximated by VDT.
20 ∼ 40 RSLs are generally enough for producing compelling results and interactive performance is
achieved for large scenes using a hardware program,

As future work, we would like to enhance to an error-driven method based on rendering error analysis.
We will also try to incorporate indirect lighting and interreflection into our method. By computing
and storing the SAT of spatial-variant BRDF and BTF. our object-separated BRDF representation
can also be extended to these applications.
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Figure 11: Self visibility distance field(SVDF) compress result. From left to right: uncompressed,
using 256 clusters and 16 eigen-vectors, using 256 clusters and 8 eigen-vectors, using 128 clusters and
8 eigen-vectors.
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Figure 13: Rendering results of the robot scene under dynamic environment map and changing view.
The robot is composed of 12 components.

Figure 14: Rendering results of the kitchen scene under dynamic environment map and changing
view. The scene is composed of 5 components.
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Figure 15: Rendering results of different BRDFs. From left to right, the BRDF models we used are:
steel Phong, bronze Cook-Torrance, metal Ward Isotropic, steel Ward Anisotropic.

Figure 16: Local light illumination and local deformable shading. The left two figures illustrate the
kitchen scene under a local light source. The right two figures show local deformable shading under
environment map.
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