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1. Introduction

Geometric constraint solving is a term of Computer-Aided Design and means
the problems which arise when the location of geometric objects (points,
lines, . . .) is described via geometric relations (distances, angles, . . .) between
them. The issues crucial for engineering applications are solvability of con-
straint problems and their sensitivity to errors (Hoffmann, 2001). Many meth-
ods have been proposed for geometric constraint solving: based on depen-
dency graphs (Bouma et al., 1995; Lee et al., 2003; Fudos and Hoffmann,
1997; Lee and Kim, 1998; Light and Gossard, 1982), rule-based (Bruederlin,
1993; Gao and Chou, 1998a; Gao and Chou, 1998b; Verroust et al., 1993) and
numerical ones (Lamure and Michelucci, 1996; Li et al., 2002), and meth-
ods based on symbolic computing (Gao and Chou, 1998a; Gao and Chou,
1998b; Kondo, 1992). See also the survey article (Hoffmann et al., 1995).

From the many works on geometric constraints with a view towards appli-
cations we mention the book (Crippen and Havel, 1988), which extensively
deals with distance constraints, and the paper (Servatius and Whiteley, 1999).

In this paper we are concerned with the second of the two problems men-
tioned above, i.e., with the propagation of errors through implicit constraints.
Based on the concept of tolerance zone (Hoffmann et al., 1995; Hu and
Wallner, 2003; Pottmann et al., 2000; Requicha, 1983; Wallner et al., 2000),
we show how to handle error propagation through implicit constraints in a
way independent of solvability. The scope of this paper in so far exceeds
CAD applications as systems of geometric constraints whose mere solution
presents a challenge do not occur very often in practice.

We assume that a certain number of geometric objects is given imprecisely
– each of them is only known to be contained in a certain tolerance zone.
Other geometric objects are located via constraints, and we want to give
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tolerance zones for them. This is done by linearizing the system of constraints
and estimating the linearization error. For each configuration, this works only
up to a certain maximum size of tolerance zones, dependent on the partic-
ular instance of the constraint problem we wish to analyze, on the number
of objects and constraints involved, and on the behavior of the constraints’
derivatives. In engineering applications, the maximum size of indecompos-
able constraint problems (see Section 2.2) usually is small, and we shall see
that the maximum sizes of tolerance zones in our examples are well above
the tolerances used in, say, mechanical engineering. The phenomenon that
a tolerance analysis of a particular instance of a constraint problem yields
unusually small maximal tolerance zones is then due to the fact that this
instance is ill-conditioned (see Examples 10 and 11).

Estimating the linearization error in the way presented below is most effi-
cient if the constraints are quadratic polynomials. The reason for this is that
these constraints are reproduced exactly by their second order Taylor expan-
sion. As it is hard to think of geometric relations which are not expressible
via quadratic polynomials, this means that for many applications estimating
the norms of second derivatives in a certain region as described in Section 5.3
can be replaced by computing those norms once.

The concept of tolerance zone in a certain way generalizes interval arith-
metic. An interval may be seen as a tolerance zone of a real number, whose
location on the real axis is known to lie in some interval. If the coordinates of
a geometric object, like a point in R

3, are known to lie in intervals, then the
coordinate vector of that geometric object is contained in a certain box which
is the product body of those intervals. So using boxes as tolerance zones for
geometric objects is the same as using interval arithmetic for these objects’
coordinates. One reason why we consider more general tolerance zones is
that they can be made invariant with respect to the action of transformation
groups acting on geometric objects. Another reason is that tolerance zones,
being more general by definition, automatically yield bounds which are at
least as tight as those obtained for intervals. A short discussion of these topics
can be also found in the introduction to (Wallner et al., 2000).

2. Geometric Constraints

2.1. DEFINITIONS AND COORDINATIZATION

We consider two kinds of geometric entities: the fixed variables p1, p2, . . .,
and the moving variables q1,q2, . . . They can be real numbers, points or lines,
for instance. We assume that certain equations ci(p1, p2, . . . , q1, q2, . . .) = 0
(the constraints) have to hold true, and we assume that knowledge of the
fixed variables together with the constraints determines the moving variables
not necessarily uniquely, but locally so.

tolerance.tex; 21/07/2004; 16:44; p.2



3

We assume that all geometric entities under consideration are coordina-
tized in some way:

Example 1. In the Euclidean plane we introduce a Cartesian coordinate sys-
tem such that a point is represented by two real numbers (ξ ,η). The line with
equation n1ξ + n2η + d = 0 is represented by coordinates (n1,n2,d) which
obey the side condition n2

1 +n2
2 = 1. ♦

The coordinates of the fixed variables pi are put together in a list “x”, and
likewise the list “y” comprises the list of coordinates of the variables qi:

x = (x1, . . . ,xr1
︸ ︷︷ ︸

p1

,xr1+1, . . . ,xr1+r2
︸ ︷︷ ︸

p2

, . . . ,xn)

y = (y1, . . . ,ys1
︸ ︷︷ ︸

q1

,ys1+1, . . . ,ys1+s2
︸ ︷︷ ︸

q2

, . . . ,ym).
(1)

The system of constraints then is a twice continuously differentiable function

F:Rn ×R
m → R

m : F(x1, . . . ,xn,y1, . . . ,ym) = (c1(x,y), . . . ,cm(x,y)), (2)

where each component ci(x,y) represents a constraint. Solving the constraint
problem means finding x,y such that F(x,y) = 0.

Remark: In (2) the number of constraints equals the number of variable
coordinates. In general, if the Jacobian of F with respect to y1, . . . ,ym has
maximal rank, there are exactly m constraints needed to determined m vari-
ables locally. If there are more than m constraints, the solvability of the system
is due to a nontrivial relation between the constraints, and some constraints
may be deleted in order to have the same set of solutions locally.

In case the Jacobian does not have full rank, it is possible that less than m
equations determine m variables. For algebraic and analytic equations, such
a singularity happens either for all x, or for almost no x. In fact, any system
of constraints can be turned into one which is always singular, by simply
considering the equation ∑ci(x,y)2 = 0 instead of F(x,y) = 0. Such problems
may be considered ill-posed. In view of the ‘almost no’ statement above, we
consider only systems of constraints whose number equals the number of
variable coordinates. ♦

Example 2. If ci represents a distance constraint regarding two points, one
fixed, and one moving, then it has the form ci(x,y) = (x j − yk)

2 + (x j+1 −
yk+1)

2 − d. Here the fixed and the moving point under consideration are
represented by the coordinates (x j,x j+1) and (yk,yk+1), respectively. An in-
cidence constraint concerning a point and a line, both moving, has the form
ci(x,y) = yiyk +yi+1yk+1 +yk+2. The fact that the coordinates (yk,yk+1,yk+2)
of a line must obey the side condition y2

k + y2
k+1 −1 = 0 is taken into account

by adding just this equation as one further constraint. ♦
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Figure 1. Constraint graphs for Examples 3, 4, and 5 (from left to right). The edges which
connect fixed variables are indicated by double lines.

2.2. GRAPHABLE CONSTRAINT PROBLEMS AND DECOMPOSABILITY

If each constraint involves exactly two of the given variables, a graph with
vertices p1, p2, . . . , q1, q2, . . . is defined in the obvious way, with one edge
per constraint. Additional edges are those between any two fixed variables. A
constraint which involves only one variable is shown as a loop in the graph.

Such a graph may contain information on the generic solvability of a
constraint problem: Constraint graphs have been used in order to decompose
the problem of solving a given system of constraints (i.e., to find the qi’s, if
the p j’s are given) into smaller subproblems (see the introductory references
which refer to graph-based methods). In this paper we are not concerned
with this topic, which in Computer-Aided Design is a very important one,
considering the sheer size of constraint problems which occur. This paper is
relevant for applications in so far as it presents a method for the tolerance
analysis of non-trivial indecomposable constraint problems. We give three
simple examples.

Example 3. The points p1 = (x1,x2), p2 = (x3,x4), and q1 = (y1,y2) in the
Euclidean plane R

2 are connected by two distance constraints ci(x,y) = ‖pi−
q1‖2 −d2

i (i = 1,2). This problem is graphable and depicted in Figure 1. ♦

Example 4. Here p1, p2, p3 are lines in the Euclidean plane, and q1,q2,q3

are points. The constraints are incidence of pi and qi (i = 1,2,3) and known
distances for q1, q2, and q3. The corresponding graph is shown by Figure 1.
We mention this particular set of geometric constraints here because q1,q2,q3

can be found with ruler and compass from p1, p2, p3, in contrast to the under-
lying graph being called ‘not ruler-and-compass constructible’ in (Lee and
Kim, 1998). The reader should be warned that in this area terminology can
sometimes be misleading. ♦

Example 5. Normalized Plücker coordinates for lines in R
3 as defined e.g. in

(Pottmann and Wallner, 2001) consist of six numbers u1, . . . ,u6 which fulfill
the relations u2

1 +u2
2 +u2

3 = 1 and u1u4 +u2u5 +u3u6 = 0. The condition that
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the two lines with coordinates (u1, . . . ,u6) and (v1, . . . ,v6) meet each other
is expressed by u1v4 + u2v5 + u3v6 + u4v1 + u5v2 + u6v3 = 0. The right hand
graph of Figure 1 corresponds to the constraint problem with four fixed lines
p1, . . . , p4 and one moving line q1 which is to meet all of them. ♦

Remark: Constraints which involve more than two variables can be split up
by introducing new variables, thus making the constraint problem graphable.
This is not relevant for tolerance analysis as presented in this paper, but may
help with visualization and allow application of graph-based algorithms. ♦

Remark: The special case of distance constraints between points of R
d is

that of a framework. This problem is very well studied and has a long history,
beginning with (Cauchy, 1813). Here it is known that for almost all x,y the
rank of the Jacobian of F is the same, and that for such x,y, the framework
is either both infinitesimally rigid and rigid, or both infinitesimally flexible
and flexible. The graph is consequently called rigid or flexible. There might
however be singular realizations of the underlying graph as an infinitesimally
flexible, but rigid, framework. The possibility that a framework is flexible
but infinitesimally rigid is known not to occur. For these notions and results,
see (Asimov and Roth, 1978; Asimov and Roth, 1979; Conelly, 1989). For
the Euclidean plane, a graph-theoretical characterization of rigid graphs is
known (Laman, 1970). The analogous problem for Euclidean three-space is
still unsolved, however. ♦

3. Taylor Expansion

Our method of computing and estimating tolerance zones consists of lin-
earization and estimating the second order remainder terms. We first define
some notation concerning the Taylor expansion of the function F defined by
(2).

3.1. LINEAR AND BILINEAR MAPPINGS: NOTATION

We use the symbols U,V,W for linear spaces and L(U,W ) for the linear space
of linear mappings of U to W . Further we use the symbol B(U,V,W ) for the
linear space of bilinear mappings of U ×V to W . We use the notation

α ·u, β [u,v], (3)

to indicate that we apply α to u and β to the pair (u,v). The reason for this is
that we have linear and bilinear mappings which depend on some variables,
like “α(u)”, and we want to avoid confusion.

tolerance.tex; 21/07/2004; 16:44; p.5



6

Subscripts indicate coefficients of vectors in U,V,W with respect to some
previously defined standard bases. Then we say that α ∈ L(U,W ) and β ∈
B(U,V,W ) have coefficients αri and βri j, if

[α ·u]r = ∑
i

αriui, β [u,v]r = ∑
i, j

βri juiv j. (4)

There are natural isomorphisms φ : B(U,V,W ) → L(U,L(V,W )) and ψ :
B(U,V,W ) → L(V,L(U,W )) defined by

β [u,v] = β φ (u) · v, β [u,v] = β ψ(v) ·u. (5)

Obviously, the coefficients of β φ (u) and β ψ(v) are computed via

[β φ (u)]r j = ∑
i

uiβri j, [β ψ(v)]ri = ∑
j

v jβri j. (6)

3.2. TAYLOR EXPANSION OF THE CONSTRAINTS

The function F of (2) takes as argument a vector of R
n ×R

m, which we
symbolically denote by (x,y), with x ∈ R

n and y ∈ R
m. For all (u,v) and

(h,k) ∈ R
n ×R

m, there is θ ∈ [0,1] such that

F(u+h,v+ k) = F(u,v)+F,x(u,v) ·h+F,y(u,v) · k

+
1
2

F,xx(u+θh,v+θk)[h,h]+F,xy(u+θh,v+θk)[h,k] (7)

+
1
2

F,yy(u+θh,v+θk)[k,k].

The symbols F,x, . . . denote linear and bilinear mappings as follows:

F,x ∈ L(Rn,Rm), F,y ∈ L(Rm,Rm), (8)

F,xx ∈ B(Rn,Rn,Rm), F,xy ∈ B(Rn,Rm,Rm), and F,yy ∈ B(Rm,Rm,Rm),

such that the coefficients in the sense of (4) of F,x and F,y are given by the
partial derivatives ∂cr/∂xi and ∂cr/∂yi, respectively; and analogously the co-
efficients of F,xx, of F,xy and of F,yy are given by ∂ 2cr/∂xi∂x j, by ∂ 2cr/∂xi∂y j,
and by ∂ 2cr/∂yi∂y j. For the general theory of derivatives we refer the reader
e.g. to (Bhatia, 1997, Section X.4).
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4. Local Solutions and Tolerance Zones

Suppose that we are given a solution (u,v) of the constraint problem F , which
means that F(u,v) = 0. A local solution of the tolerance problem which ex-
tends the solution (u,v) is a function G, defined in a connected neighborhood
U of u such that

G : U → R
m, G(u) = v and for all x in U : F(x,G(x)) = 0. (9)

It follows from the inverse function theorem that such a local solution exists
if

F,y(u,v) is nonsingular, (10)

and that it is essentially unique. Tolerance analysis means that we allow the
fixed entities p1, p2, . . . to vary in respective tolerance zones P1,P2, . . ., and
ask for the possible locations of y = (q1,q2, . . .). The most general meaning
of ‘possible’ is that we seek all solutions of the equation

F(x,y) = 0, such that x ∈ X := P1 ×P2 × . . . , (11)

where the symbol P1×P2× . . . means the set of vectors x such that each single
pi is contained in the corresponding Pi. It is usually not useful to ask this
general question, but to restrict oneself to local solutions as defined above,
i.e., we would like to compute

G(X), (X = P1 ×P2 × . . .). (12)

We define the functions G( j) as those coordinates of G, which belong to the
geometric object q j. Then a tolerance zone for the geometric entity q j, if the
fixed entities are allowed to vary in the domains Pi, is given by

Q j = G( j)(X). (13)

We have not yet specified which sets P to allow as tolerance zones of a
geometric entity p ∈ R

r. The most general definition is that of a subset of
R

r which contains p, and in this paper we require that P is connected and
bounded. It is useful to imagine tolerance zones as nicely shaped sets which
are not too big. Of course, when actually computing with tolerance zones we
restrict ourselves to sets which are computationally tractable.

Example 6. Consider points p1 = (x1,x2) = (0,0), p2 = (x3,x4) = (60,0),
q1 = (y1,y2) in the Euclidean plane and the distance constraints c1(x,y) =
(x1 − y1)

2 + (x2 − y2)
2 − 2900, c2(x,y) = (x3 − y1)

2 + (x4 − y2)
2 − 4100. A

solution is given by q1 = (20,50). We want to find the tolerance zone Q1, if
tolerance zones P1, P2 are given (Figure 2). It is easy to see that in our example
the boundary of Q1 consists of circular arcs. The result is shown in Figure 2,
left. ♦
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P1 P2

Q1

P1 P2

q1 +G(1,1)
,x · (P1 − p1)

+G(2,1)
,x · (P2 − p2)

Figure 2. Exact and linearized tolerance zones for Examples 6 and 7.

5. Linear Tolerance Analysis and the Linearization Error

5.1. LINEARIZING LOCAL SOLUTIONS

The Taylor expansion of a local solution reads

v = G(u), v+ k = G(u+h) ⇒ v+ k = v+G,x(u) ·h+
1
2

G,xx(u+θh)[h,h].

(14)
We combine (7) and (14) and get

0 = F,x(u,v) ·h+F,y(u,v) · k +o(2), k = G,x(u) ·h+o(2) for all h

=⇒ G,x(u) = −F,y(u,v)−1F,x(u,v). (15)

Equation (15) is the basis of linear tolerance analysis. The first order approx-
imation Glin of a local solution is given by

Glin(u+h) = G(u)+G,x(u) ·h. (16)

Instead of computing tolerance zones of the moving variables q1,q2, . . . via
(12) or (13), we use Glin and get linearized tolerance zones Q̄ j of the moving
variables q j, and a total linearized tolerance zone Ȳ of y:

Ȳ = Glin(X) = G(u)+G,x(u) · (X −u), Q̄ j = q j +G( j)
lin (u) · (X −u). (17)

The partition of vectors x and y into blocks which correspond to geometric
objects pi and q j according to (1), defines a partition of the matrix G,x into

block matrices G(i, j)
,x . Then (17) becomes

Q̄ j = G( j)
lin (X) = q j +∑

i

G(i, j)
,x · (Pi − pi). (18)

This Minkowski addition of the sets G(i, j)
,x · (Pi − pi) is particularly simple to

compute if they are at most two-dimensional and convex (Ghosh, 1993).
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Example 7. We continue Example 6 and compute

G,x =
[

G(1,1)
,x

∣
∣
∣G

(2,1)
,x

]

=
1
30

[

10 25 20 −25
8 20 −8 10

]

. (19)

The resulting linearized tolerance zone is shown by Figure 2, right. Both
G(1,1)

,x and G(2,1)
,x are singular, and G(i,1)

,x · (Pi− pi) is a straight line segment. It
follows that Q̄1 is a parallelogram. ♦

Remark: The matrix G(i, j)
,x corresponds to the movement of the point q j, if

all points pk except the point pi are fixed. Therefore the straight line segment
G(i,1)

,x · (Pi − pi) of Example 7 is orthogonal to the vectors q1 − pi.
A constructive method of finding those straight line segments and the

matrices G(i, j)
,x for this and other examples is mentioned e.g. in (Wunderlich,

1970) in connection with finding velocities of points in moving kinematic
chains. It is based on orthogonality relations as the one mentioned above, but
fails if the indecomposable parts of the underlying graph become too big. ♦

Remark: The infinitesimal rigidity of frameworks referred to in an earlier
remark is characterized by the regularity condition (10). ♦

5.2. COMPUTING NORMS OF LINEAR AND BILINEAR MAPPINGS

For the convenience of the reader we repeat some facts concerning defini-
tion and computation of norms of linear and bilinear operators. They are
needed for estimating the linearization error. We assume that α ∈ L(U,W ),
β ∈ B(U,V,W ), and that the linear spaces U,V,W are equipped with norms.
Then

‖α‖ := sup
‖u‖≤1

‖α ·u‖, ‖β‖ := sup
‖u‖,‖v‖≤1

‖β [u,v]‖. (20)

Thus also L(U,W ), L(V,W ), and B(U,V,W ) become normed spaces. It is not
difficult to show that with respect to these norms,

‖β φ‖ = ‖β ψ‖ = ‖β‖ (21)

(φ and ψ are the natural isomorphisms defined in Section 3.1). The examples
in this paper are such that U , V and W are real vector spaces of finite di-
mension and the norms in U,V,W are Lp norms with p = 1,2,∞. The reason
for using the 2-norm is its geometric significance; the reason for using the
∞-norm is that computations become simple; and the reason for using the
1-norm is that also here the unit sphere is a convex polyhedron (like for the
∞-norm), so some computations are not difficult either.
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The actual computation of ‖α‖ is well known for the cases of the 1-, 2-,
and ∞-norms (cf. (Higham, 1996)). In general, if the unit sphere SU in U is a
convex polyhedron with vertices xi, then for all α ∈ L(U,W ),

‖α‖ = max
i

‖α · xi‖, (22)

for any norm in W . It is therefore not difficult to compute the norm of a bilin-
ear mapping β , if SU is a convex polyhedron: We may use (21) and compute
the norm of β ψ with respect to the norms of U and L(V,W ). Analogously, if
the unit sphere SV of V is a convex polyhedron, we may compute ‖β‖ as the
norm of β φ with respect to the norms in V and L(U,W ).

This method does not work if both U and V are equipped with the 2-norm.
In that case we additionally use the ∞-norm in W . It is clear that

‖β‖2,2,∞ = max
r

max
‖u‖,‖v‖≤1

|βr[u,v]|, (23)

where βr is the r-th component function of β . It follows that ‖β‖2,2,∞ is the
maximum singular value of the matrices βri j, r fixed. A case not covered so
far is that also W is equipped with the 2-norm, i.e., the problem of computing
‖β‖2,2,2. In that case we use the estimate

‖β‖2,2,2 ≤
√

dimW‖β‖2,2,∞. (24)

5.3. ESTIMATING THE LINEARIZATION ERROR

The linearization error is the difference between an exact local solution G
and the linearized one, Glin. In the following computation we use (7), but
drop the arguments “(u,v)” and “(u+θh,v+θk)”.

F(u,v) = 0, v+ k = G(u+h), v+ klin = Glin(u+h) ⇒

0 = F(u+h,v+ k) = F,x ·h+F,y · k +
1
2

F,xx[h,h]+F,xy[h,k]+
1
2

F,yy[k,k]

⇒ k− klin = −1
2

F−1
,y (F,xx[h,h]+2F,xy[h,k]+F,yy[k,k]) .

It follows that

‖k− klin‖ ≤
1
2
‖F−1

,y ‖
(

‖F,xx‖ ‖h‖2 +2‖F,xy‖ ‖h‖ ‖k‖+‖F,yy‖ ‖k‖2
)

. (25)

When computing norms, recall that (8) describes domain and range of each
of the operators which occur in (25).

DEFINITION 1. Suppose that the three vector spaces R
n,Rm and R

m used
in the definition of F by (2) are equipped with norms, and suppose further
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that in looking for solutions of the given tolerance problem F(u,v) = 0 we
restrict ourselves to (u,v) contained in such a subset of R

n×R
m, where there

are estimates

‖F,xx(u,v)‖ ≤ α, ‖F,xy(u,v)‖ ≤ β , ‖F,yy(u,v)‖ ≤ γ, (α2 +β 2 + γ2 > 0),
(26)

with respect to the norms chosen previously. Then we define

∆(s, t) :=
1
2
(α s2 +2β st + γ t2). (27)

Remark: Upper bounds as required by (26) are particularly simple to give
if F is a quadratic function, because then F,xx, F,xy, and F,yy depend neither
on x nor on y.

If F is linear, then the norms ‖F,xx‖, . . . are zero and linearization is exact.
For our purposes it is essential that ∆(s, t) is non-zero if s, t > 0. Therefore
we require that α2 +β 2 + γ2 > 0. ♦

Example 8. We continue Examples 6 and 7. Table I shows ∆(s, t) for dif-
ferent choices of norms. The starred figures are upper bounds, cf. Equa-
tion (24). ♦

A tolerancing concept for geometric constraint problems based on lin-
earization must provide information under what circumstances the lineariza-
tion error can be bounded. This is done by the following two results:

Lemma 1. Consider a solution (u,v) of the constraint problem F(x,y) = 0,
and assume that ∆(s, t) is defined according to Definition 1. We assume that
there is a local solution G and its linearization Glin which extend (u,v), such
that v + k = G(u + h) and v + klin = Glin(u + h). Then the linearization error
is bounded by

‖k− klin‖ ≤ ‖F,y(u,v)−1‖ ·∆(‖h‖,‖k‖). (28)

Proof: This follows directly from (25) and (27). 2

THEOREM 1. Under the same assumptions as in Lemma 1, let

Cmax =
‖G,x(u)‖

‖F,y(u,v)−1‖ ·∆(1,2‖G,x(u)‖) . (29)

Choose C < Cmax and let C′ = ‖G,x(u)‖C. Then if ‖h‖ ≤C, the local solution
v+ k = G(u+h) obeys the inequalities

‖k‖ < 2C′, ‖k− klin‖ ≤ ‖F,y(u,v)−1‖ ·∆(C,2C′) < C′. (30)
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P1 P2

Q1 ⊆ Glin(P1 ×P2)

+C′′S1

Figure 3. The framework of Example 9 and a detail of Example 10. The concentric circles
have the radii 2C′, C′ +C′′, and C′.

Proof: First we give a condition on C such that

C′′ := ‖F,y(u,v)−1‖ ·∆(C,2C′) < C′. (31)

This is easily seen to be equivalent to

C2 ‖F,y(u,v)−1‖ ∆
(
1,2‖G,x(u)‖

)
< C ‖G,x(u)‖, (32)

and so in turn is equivalent to the condition C < Cmax. It is our aim to show
that the inequality ‖h‖ < C implies that either ‖k‖ ≥ 2C′ or ‖k‖ ≤ C′ +C′′.
Then by (31), there is a certain region, bounded by the spheres of radius
C′ +C′′ and 2C′, which contains no vector k. As G was supposed to be a
local solution, and the sphere ‖h‖ ≤C is connected, the local value of k must
remain inside the sphere of radius C′ +C′′. This implies the statement of the
theorem.

So we assume that ‖k‖ < 2C′. According to Lemma 1, the linearization
error is bounded by C′′. By definition of klin, we have

‖k‖ ≤ ‖klin‖+‖k− klin‖ ≤ ‖G,x(u)‖‖h‖+C′′ ≤C′ +C′′. (33)

This concludes the proof. 2

Remark: The estimates given here can be sharpened a little without much
effort: Theorem 1 gives an upper bound of the following form: ‖h‖ < C
implies that ‖klin‖ ≤C′ and ‖k− klin‖ ≤C′′. We get the relation

‖k− klin‖ ≤ ‖F−1
,y ‖∆(‖h‖,‖k‖) ≤ ‖F−1

,y ‖∆(C,C′ +C′′) =: C′′′ < C′′. (34)

by applying Lemma 1 a second time. ♦
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Table I. Numerical data for Examples 8 (left) and 11 (right).

‖u‖ ‖v‖ ‖F‖ 100∆(s, t)

∞ ∞ ∞ 3.3 s2 +3.3 st +3.3 t2

∞ 1 ∞ 4.0 s2 +2.0 st +2.0 t2

∞ 1 2 4.8 s2 +2.2 st +2.2 t2

1 2 ∞ 1.7 s2 +1.7 st +1.7 t2

2 2 2 1.7?s2 +1.7?st +1.7?t2

‖u‖ ‖v‖ ‖F‖ Cmax

∞ ∞ ∞ 1.03 ·10−2

∞ 1 ∞ 0.39 ·10−2

∞ 1 2 0.59 ·10−2

1 2 ∞ 2.65 ·10−2

2 2 2 1.79 ·10−2

6. Examples and Implementation Issues

Example 9. Figure 3 illustrates the statement of Theorem 1, when applied to
the framework of Example 6. We have chosen the 1-, 2-, and ∞-norms for u, v,
and F(u,v). Computing ∆ and Cmax presents no problems, as the constraints
are quadratic.

The tolerance zones P1,P2 have been selected such that their product P1 ×
P2 is contained in a ball of radius C < Cmax. Then Theorem 1 applies. The
concentric circles shown in the picture have the radii 2C′, C′+C′′, and C′. We
can see clearly that the linearized tolerance zone of Q1 (the parallelogram) is
contained in the circle of radius C′, and we know that the linearization error is
bounded from above by C′′. Hence, the tolerance zone Q1 must be contained
in an outer offset of radius C′′ of the linearized tolerance zone and, at the
same time, in the circle of radius C′ +C′′. ♦

Example 10. The constraint problem of Example 6 has two symmetric so-
lutions. For each solution q1, also q1’s reflection in the line p1 p2 is one.
It follows from Theorem 1 that the ball of radius ‖G,x‖Cmax (which is the
maximum size of the moving variables’ tolerance zone such that Theorem 1
applies), must not intersect its own reflection. By changing the constraints as
to allow solutions near the line p1 p2, this causes the phenomenon that Cmax

becomes smaller as the solution q1 approaches its reflection, and the tolerance
problem becomes ill-conditioned. ♦

Example 11. The choice of norms for u, v, and F(u,v) influences the value of
Cmax. Table I shows this dependence for the hexagonal framework of Figure 4.
We have chosen C = 0.6Cmax and computed the tolerance zones with respect
to the 2, ∞, and ∞-norms. The tolerance zones are scaled by a factor of 60 for
better visualization. Note that the C′′-offsets of the linearized tolerance zones
have to be taken with respect to the ∞-norm.

This example of an indecomposable constraint graph is unlikely to occur
in CAD. The reason why maximum tolerance zones are much smaller than in
Example 9 (Figure 2) is the size of the problem.
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p1 p2

q1

q2

q3

q4

Figure 4. Linearized tolerance zones (scaled by a factor of 60) for a framework with respect
to the 2-, ∞- and ∞-norms. Some values of Cmax are given in Table I.

Q1

Q2

Q3 Q3 (enlarged)

A1

A2

A3

Figure 5. Visualization of tolerance zones of radius Cmax = C and ‖G,x‖Cmax before and after
constraint balancing (Example 12).

It is well known that this framework is singular (i.e., F,y(u,v) is singular),
if and only if the six points p1, p2, q1, q2, q3, q4 are contained in an alge-
braic curve of degree two, which includes conics and pairs of lines. This is
true in general for planar frameworks where the constraint graph is bipartite,
cf. (Wunderlich, 1983; Whiteley, 1984; Stachel, 1999). If the points q j are
close to a conic section, then the corresponding values for Cmax become even
smaller. ♦

Obviously the local solutions do not change if we multiply some con-
straints by factors, but the computation of Cmax is affected by it. In Examples
9 and 11, all constraints are of the same type. This is not true for Example 4,
where we have both distance and incidence constraints. It is not clear a priori
how equations which express different geometric relations are to be scaled so
as not to badly influence the computations. As this scaling does not change
G, ‖G,x(u)‖ remains the same, and therefore so does the ratio C′/C in Theo-
rem 1. This means that balancing might enlarge the region of validity of the
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Table II. Comparison between unbalanced and balanced constraint
equations (Example 12).

‖u‖ ‖v‖ ‖F‖ Cmax Cb
max Cb

max/Cmax

∞ ∞ 1 0.302 ·10−2 1.365 ·10−2 4.51

∞ 2 2 0.355 ·10−2 1.569 ·10−2 4.41

1 ∞ 1 0.769 ·10−2 4.054 ·10−2 5.27

1 1 ∞ 0.867 ·10−2 2.046 ·10−2 2.35

1 2 ∞ 1.669 ·10−2 4.116 ·10−2 2.46

2 2 ∞ 1.277 ·10−2 3.545 ·10−2 2.77

theorem without deteriorating the ratio of the tolerance zones of fixed and
moving entities. The dependence of Cmax on the scaling of equations is not
easy to analyse in general.

Remark: For a list of geometric constraint problems, the dependence of
Cmax on the normalization of constraints has been analysed by means of
varying the unit length for measuring coordinates. It turned out that Cmax

often is optimal or nearly optimal either for a specific choice of unit length,
or for all unit lengths smaller than a given value. The unit lengths in question
are not difficult to compute. Unfortunately there is no general theory available
at present. ♦

Example 12. We continue Example 4 and compute tolerance zones for the
straight lines pi and the points q j. In Figure 5, the maximal regions of va-
lidity of Theorem 1 for a balanced and an unbalanced constraint system are
visualized.

We use the ∞-norm for the fixed variables and choose tolerance zones P1,
P2, P3 in the coordinate space R

3 for lines such that P1 ×P2 ×P3 is contained
in a ball of radius Cmax. Here Pi is chosen as an ∞-sphere of radius 0.99Cmax.

The choice of constraints as in Example 2 is not optimal. For this specific
problem, it seems reasonable that Cmax will be maximal if the coefficients in
the various constraint equations are of the same magnitude. This is indeed the
case, as numerical experiments show. Figure 5 shows the area A j traced out
by the lines of Pj – it is filled in white before and in black after balancing.
The corresponding tolerance zones Q j are shown as small white and bigger
hatched disks. Some data for both the balanced and the unbalanced case is
presented in Table II. ♦

Example 13. We present an example with nonquadratic constraints and con-
sider the following problem (Figure 6): Given is a Cartesian coordinate frame,
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P1
P2

Q1

l ξ

η

Figure 6. Tolerance zones for Example 13.

defined by its origin p1 = (x1,x2) and a point p2 = (x3,x4) on one axis. This
frame defines the position of a certain curve (here, a sine curve). The point
q1 is found by intersecting this curve with a fixed line l. We assume that p1

and p2 are given imprecisely by their respective tolerance zones and we are
interested in a tolerance zone of q1 on l.

In Figure 6, the tolerance zones Pi and Q1 for the points pi and q1 are
visualized (the latter by a pair of parallel lines as it is only one-dimensional).
The bilinear mapping F,yy is not constant and its norm has to be estimated. ♦

7. Conclusion

We have studied the propagation of errors in the form of tolerance zones
through implicit constraints. The usage of tolerance zones generalizes interval
arithmetic in the sense that intervals are tolerance zones of real numbers. The
method works by linearization and giving upper bounds for the linearization
error. Depending on the problem, there is a maximum size of tolerance zone
for which this method is applicable. Computing this radius of validity and the
linearization error requires upper bounds on the constraints’ second deriva-
tives in the form of bilinear mappings. It turns out that such bounds are found
easily if the constraints are quadratic, which for geometric constraints is very
often the case.
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