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Abstract

In this paper we analyze an algorithm which solves the point projection and the “inversion” problems fo
metric curves and surfaces. It consists of a geometric second order iteration which converges faster than exis
first order methods, and whose sensitivity to the choiceof initial values is small. Applications include the IC
algorithm for shape registration.
 2004 Elsevier B.V. All rights reserved.

Keywords: Orthogonal projection; Normal curvature; Surface

1. Introduction and previous work

Projecting a point onto a parametric curve or surface in order to find the closest point (foo
and computing the parameter values of the projection (thepoint inversion problem) has attracted interes
due to its importance in geometric modeling, computer graphics and computer vision, see e.g. (
Hewitt, 2000) or (Piegl and Tiller, 2001). Both projection and inversion are essential for interac
selecting curves and surfaces (see (Hu et al., 2001)), for construction and rendering of solid mod
boundary representation, projecting of a space curve onto a surface for surface curve design (cf

* Corresponding author.
E-mail addresses: shimin@tsinghua.edu.cn (S.-M. Hu), wallner@geometrie.tuwien.ac.at (J. Wallner).
0167-8396/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2004.12.001



ARTICLE IN PRESS
S0167-8396(04)00140-2/FLA AID:910 Vol.•••(•••) [DTD5] P.2 (1-10)
COMAID:m2 v 1.32 Prn:3/01/2005; 15:25 cagd910 by:violeta p. 2

2 S.-M. Hu, J. Wallner / Computer Aided Geometric Design ••• (••••) •••–•••

ial prop-
root of

ogonal
d find-
sing a

g
d then
gorithm

of os-
case, a
ially the
t all.

control
deriva-

ply a
d, e.g.,
rithms

tation,

jection
second
that it
always
alues by
surface
ust and

f point
and Wolter, 1996)), and are also a key issues in the ICP (iterative closest point) algorithm for shape
registration described in (Besl and McKay, 1992).

Several algorithms have been developed which solve these problems. Some depend on spec
erties of the objects to be projected onto, such as Mortennson (1985), who essentially finds the
a polynomial using a Newton–Raphson method. Limaien and Trochu (1995) compute the orth
projection of a point onto parametric curves and surfaces by constructing an auxiliary function an
ing its zeros. Hartmann (1999) proposes a first order algorithm for foot point computation by u
normalform (again, an auxiliary function) and its first derivatives.

Piegl and Tiller (2001) provide an algorithm for point projection on NURBS surfaces by decomposin
a NURBS surface into quadrilaterals, projecting the test point onto the closest quadrilateral, an
recover the parameter from the closest quadrilateral. Ma and Hewitt (2000) present a practical al
for computing a good initial value for the Newton–Raphson method.

Apparently there are two key issues in the projection and inversion problems:

– computing a good initial value; and
– using a Newton-type or other iteration to improve the solution.

Naturally, all methods using derivatives of the target object have difficulties if the magnitude
cillations of the target’s surface is smaller than the test point’s distance to the target. In that
zero order algorithm which consists in sampling the target and comparing distances is essent
only way of finding a good initial value for a further iteration, or even for solving the problem a
An example of this is given by Ma and Hewitt(2000), who find a good initial for NURBS curves or
surfaces by subdividing into Bézier curves or surfaces and making use of relationship between
points and curve/surface (the control points being a very good sample of the target, including
tives).

Algorithms which converge quickly usually employ first or second derivatives. It is natural to ap
Newton-type iteration. The sensitivity of this procedure to initial values is well known, as discusse
in (Ma and Hewitt, 2000). On the other hand, applications like shape registration require fast algo
for computing footpoints, as the projection part is actually the bottleneck of the entire compu
see (Besl and McKay, 1992) and (Pottmann et al., 2004).

The main objective of this paper is to analyze a geometric iteration method, which solves the pro
and inversion problems, and which has second order approximation properties, It uses only such
order information of the curve or surface under consideration which is geometric in the sense
is common to all possible parameterizations. In that way a certain amount of the arbitrariness
present when parameterizations in dealing with surfaces is eliminated. We compute parameter v
projecting points to curvature circles and use the second order Taylor expansion of the curve or
in order to compute parameter increments. Numerical evidence shows that this algorithm is rob
fast.

We will also show how such a second order geometric iteration is useful in shape registration o
clouds and improves the efficiency of the registration process.
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Fig. 1. Left: a first order algorithm for projection onto surfaces. Right: the curve(t,sin(t)), its curvature circles, and a step
second order iteration.

2. Orthogonal projection onto a curve

Assume thatc(t) be aC2 curve inn-dimensional Euclidean spaceRn (n � 2), andp is a test point.
A first order geometric iteration which computes the footpoint ofp is the following: Projectingp onto
the tangent ofc at t = t0 yields a pointq expressible in terms ofc(t0) and the derivativec′(t0) (see Fig. 1):

q = c(t0) + �t c′(t0). (1)

The scalar product of vectorsx, y ∈ R
n will be denoted by〈x, y〉, and the norm of a vectorx by ‖x‖.

Then

�t = 〈c′(t0), q − c(t0)〉
〈c′(t0), c′(t0)〉 . (2)

We incrementt0 by �t and repeat the above procedure until�t is less than a given tolerance, or until t
angle � (c(t0)qp) is close enough to 90◦. In this way we can compute the projection ofp onto the curve
in a simple way.

A geometric second order method is to replace the curvec by its curvature circlēc at t = t0. The
curve’s curvature will be denoted by the symbolκ . Recall that the curvature circle has radius 1/κ

and lies on that side of the tangent wherec′′(t0) points to. The curvature is computed by the f
mula κ = area(c′(t0), c′′(t0))/‖c′(t0)‖3. Here area(x, y) denotes the area of the parallelogram span
by the vectorsx and y, possibly with sign. Ifn = 2, we have area(x, y) = det(x, y). If n = 3, we
use area(x, y) = ‖x × y‖, and in general we have the formula area(x, y)2 = 〈x, x〉〈y, y〉 − 〈x, y〉2. In
any case the area has the properties that area(x + λy, y) = area(x, y + λx) = area(x, y) for all λ, and
area(λx, y) = area(x, λy) = λarea(x, y) for all λ � 0. We compute the footpointq of p on the curvature
circle (or on the tangent, ifκ happens to be zero; see Fig. 1).

We assume for the moment the curvature circlec̄ to be parameterized such that it has the same Ta
polynomial as the curvec. We use the symbol o(�t2) for any vector-valued or real-valued functionr(�t)

such that lim�t→0
1

�t2r(�t) = 0. Then we have

q = c̄(t0 + �t) = c(t0 + �t) + o(�t2) (3)

= c(t0) + �tc′(t0) + �t2

2
c′′(t0) + o(�t2). (4)

In R
2, we may take the determinant of the previous equation with eitherc′(t0). We get

det
(
q − c(t0), c

′′(t0)
) = �t det

(
c′(t0), c′′(t0)

) + o(�t2),
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which yields the formula

�t + o(�t2) = det(q − c(t0), c
′′(t0))

det(c′(t0), c′′(t0))
= 1

κ‖c′‖3
det

(
q − c(t0), c

′′(t0)
)
. (5)

From this, the parameter increment�t may be computed easily by simply disregarding the remain
term o(�t)2.

In the general case (n may now be greater than 2), we compute area(q − c(t0), c
′(t0)) with q from

Eq. (3). We get

area
(
c′, q − c(t0)

) = �t2

2
area(c′, c′′) + o(�t2) (6)


⇒ �t2 ≈ 2
area(c′, q − c(t0))

area(c′, c′′)
= 2

area(c′, q − c(t0))

κ‖c′‖3
. (7)

The sign of�t is chosen according to

sign(�t) = sign
〈
c′(t0), q − c(t0)

〉
. (8)

These equations now can be used to compute the parameter increment�t . Iteration yields a secon
order algorithm for computing the footpoint ofx onto the curve together with the parameter value of
footpoint.

Forn = 2, both formulas (5) and (7) are equivalent in the limitt → t0, but the second one, which on
includes the first derivative vector and the curvature, leads to a more stable iteration.

This algorithm also solves theinversion problem which means computing the parameter valuet for a
point which is known to lie on the curve.

3. Orthogonal projection onto a surface

We extend the geometric iteration described above to surfacess(u1, u2) in R
3. Partial derivatives with

respect to the parametersu1 andu2 will be denoted bys,1, s,2, s,11, and so on. The coefficients of the fir
fundamental form are given bygij = 〈s,i , s,j 〉, the unit normal vector field byn = (s,1 × s,2)/

√
det(gjk),

and the coefficients of the second fundamental form byhjk = 〈s,jk, n〉. We assume thats is regular, i.e.,
{s,1, s,2} is linearly independent, so det(gjk) = area(s,1, s,2)

2 �= 0.
Projecting a pointp onto a surface is done as follows. We assume that we already have an initia

p0 = s(u1
0, u

2
0), and that we findq by projectingp onto the tangent plane atp0 (see Fig. 2):

q − p0 = s,1.�u1 + s,2.�u2. (9)

By multiplying with s,i (i = 1,2) we get

〈s,1, s,1〉�u1 + 〈s,2, s,1〉�u2 = 〈q − p0, s,1〉, (10)

〈s,1, s,2〉�u1 + 〈s,2, s,2〉�u2 = 〈q − p0, s,2〉, (11)

so�u1,�u2 can be computed as solution of a regular system of linear equations, with coefficient
(gjk). We updateu1

0, u2
0 by adding�u1, �u2. This first order geometric iteration appears in (Hartma

1999; Hoschek and Lasser, 1993), and (Hu et al., 2000).
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Fig. 2. Illustration of first order (left) and second order (right) geometric iteration for surfaces.

In order to improve efficiency, we would like to propose the following approach of geometric ap
imation by normal curvature. Any vectorx − p0 can be expressed as a linear combination of the tan
vectorss,1, s,2 and the normal vectorn atp0:

x − p0 = λ1s,1 + λ2s,2 + νn. (12)

The normal curvature of the tangent vectorλ1s,1 + λ2s,2 can be computed via

κn =
(

2∑
i,j=1

hijλ
iλj

)
·
(

2∑
i,j=1

gijλ
iλj

)−1

. (13)

We consider a planar section of the given surface with the plane which containsp0, the normal vectorn,
and the pointx. It has some parameterizationc(t) which we actually will not need, and which has t
property thatc(0) = p0, and that its tangent vector is given by

c′(0) = λ1s,1 + λ2s,2. (14)

Its radius of curvature is given by 1/κn. The circle of curvature is contained in the plane mentioned ab
and has the centerp0 + n/κn.

We project the pointx onto the circle of curvature, which yields the pointq. The orthogonal projection
of x onto the surface is now approximated byc(�t), with �t computed according to Eq. (7) (c′ is taken
from (14)). The sign of�t is that of the scalar product〈c′(0), q −p0〉 We now updateu1 andu2 according
to

ui → ui + �ui, �ui = λi�t. (15)

The procedure is repeated again, withs(u1, u2) as new initial point, until the desired accuracy criteria
met.

4. Examples

This section shows numerical evidence concerning the behaviour of the first and the secon
geometric algorithms discussed above.
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Table 1
Stepizes�t1 and�t2 in Example 1 for the first and second order algorithms

x = (1,0.8), t0 = 0.898

Step 1 2 3 4 5 6
�t1 8.1e-02 2.7e-03 5.7e-05 1.2e-06 2.3e-08 0.0
�t2 8.4e-02 1.8e-04 6.0e-10 0.0 t = 0.982347

x = (2,2), t0 = 1.795

Step 1 2 3 4 5 6
�t1 −2.2e-02 2.1e-02 −2.0e-02 1.9e-02 −1.8e-02 1.7e-02
�t2 −1.1e-02 2.5e-05 1.0e-10 0.0 t = 1.783812

Fig. 3. Illustration of geometric iteration for the B-spline curve.

Example 1. We consider the curvec(t) = (t,sint), depicted in Fig. 1 together with 7 evenly distri
uted curvature circles. Table 1 shows the results of geometric iteration. Here, the initial paramet0 is
estimated by comparing the distance between the test point and 7 uniformly sampled points w
rameterst = 2kπ/7, k = 0,1, . . . ,7. The experimental data show the second order algorithm has
convergence, and but the convergence of the first order algorithm is sometimes very slow.

Example 2. We consider the order B-spline curvec(t) = ∑n
i=0 biB

4
i (t) with the knot list(0,0,0,0,0.2,

0.4,0.6,0.8,1,1,1,1) and the control points(100,100), (140,196), (200,240), (260,164), (340,164),
(400,240), (460,196), (500,100). An initial parameter guess for the footpointq of a pointx may be
obtained by finding the control point nearest tox (see Ref. Ma and Hewitt (2000)), or by computi
distances to a sample of pointsc(ti).

Fig. 3 shows the initial pointx to be projected, together with the first guessc(t0) for a footpoint and
the curvature circle there. The “+” sign denotes the result of one step of iteration.

Table 2 compares the first and second order algorithms, the faster convergence of the latte
clearly visible. Table 3 shows the robustness of the second order algorithm with respect to the ch
an initial valuet0. The solution in this case is given byt = 0.6223419238.

Example 3. In order to give also a surface example, we consider the 4× 4 B-spline surfaceS(u, v) =∑3
i=0

∑6
j=0 pijBi,4(u)Bj,4, (v), whose control points are given by (−236,−197,−22), (−206,−117,

−22), (−216,−27, 8), (−246, 62,−22); (−156,−177, 8), (−176,−97, 38), (−157, 20, 126), (−186,
142, 8); (−86, −157, 8), (−138, −113, −146), (−104, 14,−60), (−96, 102, 8); (−6, −197, −22),
(−47,−96,−33), (25, 32, 95), (−6, 102, 8); ( 74,−177, 8), (34,−75, 147), (86, 97, 105), (54, 142, 8
(124,−157, 8), (198,−31, 63), (64, 31, 154), (144, 102, 8); (204,−197,−22), (234,−77, 8), (214,−7,
8), (239, 102,−22). The knot lists are(0,0,0,0,0.25,0.5,0.75,1,1,1,1) for u and(0,0,0,0,1,1,1,1)



ARTICLE IN PRESS
S0167-8396(04)00140-2/FLA AID:910 Vol.•••(•••) [DTD5] P.7 (1-10)
COMAID:m2 v 1.32 Prn:3/01/2005; 15:25 cagd910 by:violeta p. 7

S.-M. Hu, J. Wallner / Computer Aided Geometric Design ••• (••••) •••–••• 7

5

0

able 4

r

t cloud
that its
Table 2
Stepsizes�t1 and�t2 for the first and second order algorithms together with the solutiont corresponding to Example 2

x = (381,252), t0 = 0.75

Step 1 2 3 4 5 6
�t1 3.2e-02 −2.3e-02 −1.8e-02 −1.4e-02 1.1e-02 −8.8e-03
�t2 2.1e-02 −1.2e-03 −4.1e-06 0.0 t = 0.7695140103

x = (332,200), t0 = 0.5

Step 1 2 3 4 5 6
�t1 8.5e-02 2.9e-02 6.9e-03 1.3e-03 2.2e-04 3.9e-0
�t2 1.2e-01 1.2e-03 −3.8e-06 0.0 t = 0.6223419238

Table 3
Convergence rate in terms of�t of the second order algorithm for different choices of initial valuet0 (x = (332,200) in
Example 2)

Step 1 2 3 4 5 6

t0 = 0.30 1.4e-01 1.7e-01 1.1e-02 −2.9e-04 −2.0e-07 0.0
t0 = 0.40 2.0e-01 2.0e-02 −1.1e-03 2.7e-06 0.0
t0 = 0.50 1.2e-01 1.2e-03 −3.8e-06 0.0
t0 = 0.60 2.4e-02 −1.4e-03 −5.1e-06 1.0e-10
t0 = 0.70 −6.6e-02 −1.1e-02 −2.9e-04 −2.0e-07 0.0
t0 = 0.80 −1.1e-01 −6.1e-02 −9.0e-03 −1.9e-04 8.8e-08 0.0

Table 4
Data for Example 3 (x = (120,10,100), (u1

0, u2
0) = (0.9,0.6))

First order algorithm

Step 1 2 3 4 5 6
�u1 −3.8e-02 −2.4e-06 −3.8e-04 −1.4e-04 −4.3e-05 1.2e-05
�u2 −5.4e-02 1.4e-02 −2.6e-03 −5.1e-04 −1.1e-04 2.5e-05

Second order algorithm

Step 1 2 3 4 5 6
�u1 −3.4e-02 −4.3e-03 3.8e-05 −5.1e-06 9.0e-08 −1.2e-08
�u2 −4.8e-02 6.5e-03 2.3e-04 7.3e-08 5.4e-07 2.0e-1

for v. An initial estimate for the projection has been obtained by means of the control polyhedron. T
shows experimental results with the test point(120,10,100) and initial parameter(0.9,0.6). Table 5
shows a case were the first order algorithm fails. The test point is(−120,10,100), the initial paramete
was set to(0.1,0.6).

5. Application to the ICP algorithm for shape registration

The shape registration problem for a given design model and a set of data points (i.e., a poin
approximating the shape of the design model) amounts to finding a rigid body motion such
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Table 5
Experimental data for Example 3. Test point is(−120,10,100), and(u1

0, u2
0) = (0.1,0.6)

First order algorithm

Step 1 2 3 4 5 10
�u1 6.9e-02 −7.3e-02 9.6e-02 −1.0e-01 1.2e-01 −1.2e-01
�u2 6.3e-02 2.5e-02 −7.0e-02 7.6e-02 −9.7e-02 1.0e-01

Second order algorithm

Step 1 2 3 4 5 10
�u1 3.1e-02 −9.4e-03 7.0e-03 −4.9e-04 7.8e-04 −1.5e-07
�u2 2.9e-02 3.8e-02 1.4e-03 5.5e-03 5.1e-06 2.3e-0

Table 6
Convergence rate of the registration process illustrated in Fig. 4. Object size:≈ 2.0 × 0.8 × 0.4. The quantityE(j) is defined

as
√

(
∑

i (xi − yi )
2)/k, wherej is the number of iterations

j 0 1 2 3 4 5 6 7 8

E(j) 1.04 3.5e-1 2.1e-1 1.1e-1 6.0e-2 1.3e-2 4.3e-4 1.7e-6 2.3
E(j)

E(j−1)
0.34 0.60 0.53 0.54 0.22 3.2e-2 3.7e-3 1.4e

application to the design model minimizes an appropriately defined distance of the design mod
the point cloud.

A well known standard algorithm to solve such a registration problem is the iterative closes
(ICP) algorithm of Besl and McKay (1992). It usually consists of two steps. First, for pointsxi in the
cloud the respective closest pointsyi on the model are computed. Second, a motionm is found such
that

∑
dist(m(xi), yi) is minimized. The first step is the most time consuming part of the algorithm

has to implemented efficiently, see e.g. (Pottmann et al., 2004). Other registration algorithms suc
Newton method of Tucker and Kurfess (2003) or the squared distance function method of Pottm
al. (2004) depend on computing closest points, i.e., computing orthogonal projections.

Second order algorithms as those discussed in this paper have some properties which ma
suitable for projection and for accelerating the ICP algorithm. First, ifxi andxj are close together, w
may always use the footpointyi of xi as an initial value for the computation ofyj ; and when iterating the
computation of the motionm, we may use the footpoints of the previous step as an initial value fo
current one. While this is true for most projection algorithms, it is probably even more so for ours
is rather insensitive with respect to initial values.

Depending on the oscillatory behaviour of the surface in question (which would be tame for
applications, a fact usually known beforehand), we might expect, due to numerical observatio
about 95% of the total parameter increment during projection is achieved in the first step. This
that it would be sufficient to perform just one step of the projection algorithm in order to ensure
vergence of the ICP algorithm. Fig. 4 shows a registration example. It has been computed us
algorithm of Pottmann et al. (2004), which is faster than the traditional ICP method, as documen
Table 6.
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Fig. 4. Left: before registration. Right: after registration.

6. Conclusion

This paper investigates point projection and point inversion on parametric curves and surfaces b
curvature information. Experimental results show that the algorithms under consideration are rob
efficient. Applications to shape registration are discussed.
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